Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы щелочные и щелочноземельные

    Среди элементарных веществ к типичным восстановителям принадлежат активные металлы (щелочные и щелочноземельные, цинк, алюминий, железо и др.), а также некоторые неметаллы, такие, как водород, углерод (в виде угля или кокса), фосфор, кремний. При этом в кислой среде металлы окисляются до положительна заряженных ионов, а в щелочной среде те металлы, которые образуют амфотерные гидроксиды (например, цинк, алюминий, олово), входят в состав отрицательно заряженных анионов или гидроксокомплексов. Углерод чаще всего окисляется [c.164]


    Помещения цехов, производств, установок с наличием твердых веществ, взаимодействующих с образованием горючих газов и воспламеняющихся на воздухе карбиды щелочных и щелочноземельных металлов щелочные и щелочноземельные металлы (калий, натрий, литий [c.381]

    Солеобразные гидриды образуют наиболее активные металлы (щелочные и щелочноземельные). Эти соединения построены по типу ионных, т. е. состоят из поло китель-ных ионов металла и отрицательных ионов водорода. Последнее подтверждается практически — при электролизе расплава соединения водород будет выделяться на аноде. [c.207]

    Минеральные компоненты нефти. В состав нефти входят многие элементы. В золе нефтей обнаружены металлы щелочные и щелочноземельные Ь, Ыа, К, Ва, Са, 5г, Мн металлы подгруппы меди Си, Ag, Аи цинка 2п, Сё, Hg бора В, А1, Са ванадия V, [c.31]

    Поэтому по окислительной активности водород существенно уступает галогенам. По этой же причине ясно выраженный ионный характер проявляют лишь гидриды наиболее активных металлов — щелочных и щелочноземельных, например КН и СаНа. [c.276]

    Углерод непосредственно соединяется со многими металлами, образуя карбиды — соединения, в которых углерод электроотрицателен. Степень окисления углерода в карбидах различна. Различны и химические свойства карбидов. С активными металлами — щелочными и щелочноземельными — углерод образует солеподобные карбиды, в которых атомы углерода связаны между собой тройной связью в группировку — С С —, как, например, в СаС . Степень окисления углерода в них —1. При взаимодействии этих карбидов с водой они подвергаются гидролизу с образованием гидроксида металла и ацетилена  [c.203]

    Распределительная хроматография на целлюлозе применялась также для выделения тория из руд, при анализе сплавов и сталей, для разделения благородных металлов, щелочных и щелочноземельных металлов и некоторых других элементов [102]. [c.175]

    Оксиды наиболее активных металлов (щелочных и щелочноземельных, начиная с кальция) при обычных условиях непосредственно взаимодействуют с водой, образуя гидроксиды, которые являются сильными, растворимыми в воде основаниями — щелочами, например, [c.9]

    Подобные полярные связи образуются и в том случае, когда для образования связывающего дублета электроны предоставляет каждый из атомов, но только тогда, когда из-эа структурного расположения и неодинакового притяжения электронного дублета различными атомными ядрами связывающая электронная пара смещена от центра связи к одному из ядер. Такая связь образуется в молекуле воды, в которой предполагается значительная степень ионного взаимодействия. Полярные связи образуются при связывании элементов, сильно различающихся по электроотрицательности. Это неудивительно, особенно для связей, которые образует кислород или фтор с некоторыми ионами металлов (щелочные и щелочноземельные металлы). [c.159]


    IV. Самовозгорающиеся и самовоспламеняющиеся вещества — металлы щелочные и щелочноземельные (калий, натрий, кальций), металлы пирофорные (алюминий в виде пыли или пудры, цинковая пыль и др.), карбид кальция, перекиси, фосфор белый и желтый, фосфористые натрий и кальций и др. хранение этих веществ недопустимо вместе с другими огнеопасными веществами всех групп. При отсутствии последних вещества группы IV можно хранить в изолированных помещениях общих огнестойких складов. [c.215]

    При аналитических операциях необходимо обеспечить присутствие в пламени свободных атомов определяемого элемента. Здесь следует учитывать два фактора возможность образования простых молекул (МеО, МеОН и некоторых других) и степень ионизации атома определяемого металла. Щелочные и щелочноземельные металлы ионизируются сравнительно легко, поэтому при их определении методом атомной абсорбции возникают затруднения. Однако определение кальция и других щелочноземельных элементов облегчается тем, что постоянной примесью воздуха является натрий, который создает высокую фоновую концентрацию электронов. Последняя снижает степень ионизации кальция [22]. [c.147]

    Дуговой разряд поддерживается либо между металлическими электродами, если они достаточно устойчивы к нагреванию и окислению, либо между угольными электродами. Каналы в них обычно содержат набивку в виде окислов или солей исследуемых металлов. Непосредственно электродами дуги может служить большинство металлов и их сплавов. Легкоплавкие и легкоокисляемые металлы (щелочные и щелочноземельные) применяются в виде сплавов с более стойкими металлами. Некоторые из них могут служить электродами дуги, если поместить ее в атмосферу инертного газа или в вакуум. Наиболее широко распространена дуга с ртутными электродами [10.16]. Вакуумная ртутная дуга в кварцевом сосуде является одним из широко применяемых источников яркого ультрафиолетового излучения. Одна из конструкций такого рода дуги изображена на рис. 10.11, а. Ртуть в количестве 15—20 см содержится в электродных отростках, которые во время работы охлаждаются ребристыми алюминиевыми радиаторами. Для зажигания дуги ее слегка наклоняют. Переливающаяся из анодного отростка ртуть образует проводящую цепь, при разрыве которой зажигается дуга. [c.265]

    Молекулярный водород при обычной температуре химически малоактивен. Только фтор соединяется с ним при обычных условиях , хлор — при освещении, кислород — только при поджигании смеси. При повышенной температуре водород вступает в соединение со многими элементами, преимущественно с неметаллами, но и с сильно электроположительными металлами (щелочными и щелочноземельными). [c.60]

    Металлы (щелочные и щелочноземельные) [c.379]

    К образованию комплексов способны преимущественно сравнительно малоактивные металлы. Щелочные и щелочноземельные металлы образуют комплексы сравнительно редко. В качестве комплек-сообразователей чаще выступают металлы В-групп и металлы групп П1А и IVA. В центре комплекса располагается атом или ион металла. [c.20]

    В качестве окислителя вода вступает в реакцию с активными металлами — щелочными и щелочноземельными. [c.154]

    Наиболее активные металлы (щелочные и щелочноземельные) даже при обычных условиях взаимодействуют с водой. Мерой активности металлов могут служить величины их стандартных электродных потенциалов (см. стр. 133). Электродные потенциалы малоактивных металлов (Си, Hg, Ag, Au и других) выражаются положительными величинами, а более активных металлов — отрицательными величинами. [c.350]

    Химические свойства водорода. Пока атомы водорода сцеплены в молекулу, водород — почти такой же химически инертный газ, как азот. На холоду и в темноте водород соединяется только с самым электроотрицательным элементом — фтором. Но при нагревании водород соединяется как с большинством неметаллов, так и с наиболее электроположительными из металлов — щелочными и щелочноземельными металлами. [c.277]

    Более активные металлы (щелочные и щелочноземельные) вытесняют водород даже из воды (стр. 107). [c.101]

    Для наглядности Менделеев приводит сопоставление двух групп металлов — щелочных и щелочноземельных — в случае истинных атомных весов, согласных с теорией Жерара, и в случае эквивалентных весов. В первом случае имеем  [c.165]

    Из величин собственных потенциалов, приведенных в табл. 11, видно, что потенциалы многих металлов (щелочных и щелочноземельных, магния, алюминия и др.) не могут быть определены экспериментально, так как на поверхности соответствующих [c.328]

    Наиболее активные металлы (щелочные и щелочноземельные) даже при обычных условиях взаимо-. действуют с водой. [c.192]

    Предположим сначала, что электрон переходит от Л к В. Переход в этом направлении можно представить происходящим в две ступени. На первой ступени энергия затрачивается на отрыв, например одного внешнего электрона от атома Л. Величина этой энергии, называющейся энергией, или потенциалом ионизации 1а зависит от энергии притяжения между внешним электроном и остальной частью атома, содержащей положительно заряженное ядро. Энергии ионизации имеют наименьшие значения у наиболее активных металлов (щелочных и щелочноземельных), у которых легче всего удалить электрон. [c.297]


    Так, мы видим, что в левой части ряда напряжений находятся наиболее легко окисляющиеся и вообще самые энергичные металлы—щелочные и щелочноземельные. Наоборот, справа находятся благородные , т. е. наиболее инертные химически металлы Ag, Pt, Au. [c.171]

    Металлы щелочные и щелочноземельные. Взвешиваемые формы — МгО и МО. При сожжении органических соединений, содержащих щелочные или щелочноземельные металлы, углерод может частично оставаться в контейнере в форме термостойких карбонатов. В присутствии в зоне сожжения оксида вольфрама (VI) или оксида кремния (в виде дробленого кварца) образуются вольфраматы [7] или силикаты [176] металлов, и диоксид углерода полностью выделяется в газообразной форме. Если же металл в веществе связан с сульфогруппой, то остаток представляет собой его сульфат  [c.100]

    Металлы щелочные и щелочноземельные 17 1710 Рубидий хлористый (концентрат) [c.35]

    Амальгамы (от франц. amalgama) — жидкие или твердые сплавы, образующиеся при растворении в ртути различных металлов. Щелочные и щелочноземельные металлы и некоторые другие элементы образуют со ртутью устойчивые соединения. При нагревании А. меди, серебра, золота и др. отгоняется ртуть. Железо не образует А., поэтому ртуть можно перевозить в стальных сосудах. А. используют при золочении металлических изделий, в производстве зеркал. А. щелочных металлов и цинка в химии применяют как восстановители. А. используют при электролитическом получении редких металлов, извлечении некоторых металлов из руд (см. Амальгамация). [c.14]

    Окислительно-восстановительные свойства. Алюминий—се ребристо-белый металл. Нормальный окислительно-восстановительный потенциал системы А1з+ в кислой среде равен —1,28 а. а в щелочной среде окислительно-восстановительный потенциал системы АЮ /А равен —2,35 в. Поэтому алюминий хорошо растворяется в соляной и разбавленной серной кислотах. Еще легче он растворяется в щелочах, так как в щелочном растворе потенциал алюминия приближается к потенциалу наиболее активных металлов (щелочных и щелочноземельных). [c.327]

    Металлы с наименьшими алгебраическими величинами нормальных электродных потенциалов. Сюда относятся все типичные металлы (щелочные и щелочноземельные, а также алюминий). Ионы этих металлов характеризуются наименьшим сродством к электрону. При электролизе водных растворов солей указанных металлов на катоде восстанавливаются не их катионы, а молекулы воды (и в известной мере ионы водорода) (см. ниже — пример 3). [c.293]

    Очевидно, металлы как восстановители, будут вступать в реакции с различными окислителями, среди которых могут быть простые вещества (неметаллы), кислоты, соли менее активных металлов и некоторые другие соединения. Так, все металлы образуют соединения с кислородом — окислы. При этом окислы наиболее активных металлов (щелочных и щелочноземельных) характеризуются основными свойствами. С уменьшением же активности металлов свойства окислов изменяются от основных, в которых металлы проявляют низшую степень окисления, через амфотерные с промежуточной степенью окисления к кислотным, где проявляется их высшая степень окисления. Например, хром может существовать в трех различных степенях окисления - -2, +3, -Ьб. Проявляя низшую из них, он образует основной окисел СгО, которому соответствует гидроокись Сг (0Н)2. Хром со степенью окисления 4-6 образует кислотный окисел СгОз, которому соответствует хромовая кислота НзСгО . И, наконец, хром с промежуточной степенью окисления образует амфотерный окисел СГзОз, которому соответствует гидроокись Сг(ОН)з. Из этого примера видно, что металлы, имеющие различную степень окисления, могут проявлять свойства как металлов, так и неметаллов. [c.283]

    Из величин собственных потенциалов, приведенных в табл. И, видно, что потенциалы многих металлов (щелочных и щелочноземельных, магния, алюминия и др.) не могут быть определены экспериментально, так как на поверхности соответствующих электродов должно происходить восстановление водорода. Во многих случаях (Mg, Al, Сг) экспериментальные трудности увеличиваются за счет образования на поверхности металлов окисных пленок и слоев адсорбированного кислорода (гл. XIII, 3). Чем ближе потенциал к линии аЬ и чем медленнее происходит восстановление водорода на поверхности данного металла, тем меньше будет ошибка при измерении, обусловленная этим процессом. Так, очень малая скорость восстановления [c.329]

    Единственными ионными сульфидами являются сульфиды наиболее электроположительных металлов (щелочных и щелочноземельных), у которых положительные ионы имеют малые заряды, а также сул -фиды некоторых переходных элементов, которые тоже могут образовать И01И,1 с малым зарядом. Такие сульфиды имеют структуры, подобные структурам соответствующих окислов (см, структуры сульфидов и окислов щелочных и щелочноземельных металлов, МпО и. Чп8, содержащие ионы М+ или М- + ). [c.354]

    Зо 1Ьные компоненты в газойлевых фракциях продуктов переработки нефти и каменноугольной смолы представлены металлоорганическими комплексами никеля, ванадия, молибдена, железа и других металлов, щелочными и щелочноземельными солями нафтеновых кислот, а также высокодисперсными примесями катализаторной пыли и других минеральных веществ [6, 7]. Содержание зольных компонентов в сырье для сажи достигает 0,05%. [c.9]

    Ф. энергично соединяется с большинством металлов. Щелочные и щелочноземельные металлы воспламеняются на холоду, а В1, 8и, Т1, Мо, — при незначительном нагревании. Hg, РЬ, и, V реагируют с Ф. нри комнатной теми-ре, Р1 — ири темп-ре темнокрасного каления. При взаимодействии металлов с Ф. образуются, как правило, высшие фториды — и Ра, МоРб, Н Р.2 и т. д. Нек-рые фториды (СоРз, МнРз, АйРа, 8ЬР5, РЬР4) обладают фторирующими свойствами и иашли применение как фторирующие реагенты (см. Фторорганические соединения). Ре, Си, А1, N1, 2п практически ие взаимодействуют с Ф. нри обычных теми-рах благодаря образованию заш.итной нленки фторида. В порошкообразном состоянии металлы реагируют с Ф. при слабом нагревании. При сильном нагревании все металлы способны к горению в атмосфере Ф. (о фторидах металлов см. Натрия фторид. Калия фторид. Серебра галогениды п т. д.). [c.288]

    Окраска пламени. В пламени паяльной трубки или газовой горелки соедпнения нек-рых элементов, особенно металлов щелочной и щелочноземельной группы, переходят в парообразное соедпне-пие и окрашивают пламя в характерный цвет. Труднолетучие соединения сами по себе окраски пламени но дагот, поэтому предварительно их разлагают смачиванием соляной, реже серной к-той. В случае присутствия двух, трех элементов, папр. N8, К и [c.15]

    Если мы перейде.м к -металлам щелочных земель, то так как гидратация их может быть легко определена, а теплота образования водных окисей известна, образование безводных окисей определить легко, и вот приблизительные числа для вс 1Х трех м-еталлов Са — 131 ООО кал, барий — 124.000 кал, 5г—среднее—-120.000 кал. Эта лруппа, подобно предыдущей, с возрастанием атомного веоа увеличивает зн-ергию по отношению 1К галоидам и уменьшает -по отношению к О. Для всех этих металлов — щелочных и щелочноземельных — числа получены очень большие, далее следуют -металлы тяжелые с числами гораздо меньшими. [c.214]

    Рассмотренные методы получения металлов восстановлением их окислов при высокой температуре называют пирометаллургическими. Активные металлы (щелочные и щелочноземельные, магний и алюминий) получают электролизом их расплавов. Неактивные металлы, например медь, в чистом виде получают электролизом водных растворов их солей. В ряде случаев с целью извлечения металла из руды последнюю обрабатывают растворамй кислот, щелочей или солей, а затем из получившегося раствора металл выделяют химическим путем, вытесняя его более активным металлом или электролизом. [c.377]


Смотреть страницы где упоминается термин Металлы щелочные и щелочноземельные: [c.387]    [c.10]    [c.193]    [c.46]   
Аналитическая химия промышленных сточных вод (1984) -- [ c.96 , c.97 ]

Экологическая биотехнология (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Амальгама щелочных и щелочноземельных металлов

Анализ смеси катионов щелочных и щелочноземельных металлов

Взаимодействие боргидридов щелочных и щелочноземельных металлов с кислотами и другими реагентами

Взаимодействие хлоридов редкоземельных металлов и тория с хлоридами щелочных, щелочноземельных и других металлов в расплавах

Водород и гелий как прототипы химически активных и химически инертных элементов и как кайносимметричные типические представители гомологичных им по группе щелочных и щелочноземельных металлов

Гидроалюминаты щелочных и щелочноземельных металлов

Гидроксиды щелочных и щелочноземельных металлов

Гидроокиси щелочных и щелочноземельных металлов

Гидроокиси щелочных и щелочноземельных металлов, осаждение

Двуокись углерода с окислами щелочных и щелочноземельных металлов

ДибенЗо краун в органических растворителях щелочных и щелочноземельных металлов

Диогенов. О сдвиге равновесия во взаимных системах, образован- I ных щелочными и щелочноземельными металлами

Ионы щелочных и щелочноземельных металлов

Карбонаты щелочноземельных металлов щелочных металлов

Карбонаты щелочных и щелочноземельных металлов

Катализатор гидраты окисей щелочных и щелочноземельных металлов

Кислотные свойства гидратированных ионов металлов, не относящихся к группам щелочных и щелочноземельных

Конденсированные фосфаты щелочных и щелочноземельных металлов

Металлорганические соединения щелочных и щелочноземельных металлов

Металлы щелочноземельные

Металлы щелочные или щелочноземельные металлы редкоземельные, скандий и иттрий

Металлы, силы связи в щелочных и щелочноземельных металлах

Металлы, сплавы, окислы, соли (щелочных, щелочноземельных, редких и цветных металлов)

Методика 14. Разложение фторидов щелочных и щелочноземельных металлов

Методы анализа металлов с простыми спектрами (щелочных металлов, Си, Ag, Аи, Ве, щелочноземельных металлов, Zn, d, Hg, AI, Ga, In, Tl, Sn, Pb, As, Sb, Bi) (стр

Методы анализа чистых металлов с простыми спектрами, их окислов и важнейших соединений (щелочных металлов, Си, Ag, Аи, Ве, щелочноземельных металлов, Zn, d, AI, Ga, Sn, Pb, As, (стр

Микулинский, Г. Г. Каменщиков. Вакуумная тоннель- ная печь непрерывного действия для получения щелочных и щелочноземельных металлов

Молекулярный объем щелочных и щелочноземельных металлов, таблица

Некоторые общие вопросы по конструированию вакуумных печей для получения щелочных и щелочноземельных металлов

Определение ионов щелочных и щелочноземельных металлов

Определение примесей в солях щелочных и щелочноземельных металлов. Г. А. Певцов, Т. Г. Манова, Красильщик

Определение суммы щелочных и щелочноземельных металлов в вольфраме с применением высоковольтного электродиализатора

Определение щелочноземельных и щелочных металлов в пламени воздух—ацетилен

Опыт 15. Окрашивание пламени солями щелочных и щелочноземельных металлов — 50. Опыт 16. Окрашивание пламени соединениями бора

Осаждение тория и отделение его от марганца, никеля, цинка, меди, кадмия, щелочноземельных металлов, магния и щелочных металлов

Основные способы получения щелочных и щелочноземельных металлов

Отделение бериллия от марганца, кобальта, никеля, цинка, щелочноземельных и щелочных металлов

Отделение урана от щелочных и щелочноземельных металлов

Отделение щелочных металлов от щелочноземельных

Под влиянием гидроокисей щелочных и щелочноземельных металлов

Получение ацетиленидов прямым действием ацетилена на щелочные и щелочноземельные металлы

Попова J Щелочные и щелочноземельные металлы

Производство хлоратов щелочных и щелочноземельных металлов

РАБОТА 8. Щелочные, щелочноземельные металлы и магний

Растворимость щелочных и щелочноземельных металлов в аммиаке

Реакции со щелочными и щелочноземельными металлами

Свойства s-элементов (щелочных и щелочноземельных металлов) и их соединений

Соединения щелочных и щелочноземельных металлов

Соли щелочных и щелочноземельных металлов

Состояние ионов щелочных и щелочноземельных металлов в растворах

Сплавление и спекание циркона со щелочами и карбонатами щелочных и щелочноземельных металлов

Тест 10 по теме Щелочные и щелочноземельные металлы и их соединения

Фосфор, мышьяк, щелочные и щелочноземельные металлы

Фториды щелочноземельных и щелочных металлов и аммония

Хлораты щелочных и щелочноземельных металлов

Цитович, М. К. Торпуджиян, О сравнительной сорбируемости щелочных и щелочноземельных металлов ионитами на основе титана и циркония

Щелочноземельные металлы Щелочные металлы

Щелочные и щелочноземельные металлы тушение

Щелочные и щелочноземельные металлы хранение на складах



© 2025 chem21.info Реклама на сайте