Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензиновая фракция

    Широкие фракции прямогонных бензинов (н.к.— 180°С) подвергают вторичной перегонке на блоках установок АТ и АВТ или на специальных установках вторичной перегонки с получением широкой утяжеленной или узких бензиновых фракций, используемых в качестве сырья каталитического риформинга. В зависимости от состава нефти, ассортимента нефтепродуктов и принятой поточной схемы переработки нефти на блоках и установках вторичной перегонки бензинов получают следующие фракции  [c.207]


Таблица П1.3. Сравнительные показатели процесса выделения узкой и широкой бензиновой фракций в колонке К-1 [19] Таблица П1.3. <a href="/info/1534877">Сравнительные показатели процесса</a> <a href="/info/1609148">выделения узкой</a> и широкой <a href="/info/411310">бензиновой фракций</a> в колонке К-1 [19]
    Образующиеся в процессе крекинга газы содержат олефины, которые полимеризацией или алкилированием могут быть превращены в полимер-бензин или алкилат, которые могут быть присоединены к крекинг-бензину. Этот процесс, не относящийся к нефтехимическим, здесь не рассматривается. В других случаях, например при значительном спросе на мазут, целесообразно в качестве сырья для крекинга использовать прямогонные фракции, выкипающие в пределах 200—400°, а остаток от прямой перегонки нефти использовать как отопительный мазут. Такое топливо, однако обладает чрезмерно высокой вязкостью. Его можно подвергать легкому крекингу, при котором образуется лишь немного бензина, но заметно понижается вязкость остатка. Это явление, называемое разрушением вязкости , весьма часто используется в технологии. Бензиновая фракция нефти, так называемый прямогонный бензин, разделяется далее на две фракции легкий и тяжелый бензины. Тяжелая бензиновая фракция для улучшения моторных свойств подвергается термическому или каталитическому риформингу, заключающемуся в кратковременном нагреве при высоком давлении в присутствии катализатора или без него, улучшающему антидетонационные свойства бензина. Принципиальная схема современного метода переработки нефти представлена на рис. 7 [7]. [c.18]

    К термическому крекингу относится также так Называемый риформинг. Его назначение — улучшение антидетонационных качеств (октанового числа) тяжелой бензиновой фракции прямой перегонки путем нагрева под давлением до 550—600°. [c.38]

    Гидроформинг-процесс представляет собой каталитический риформинг-процесс для бензиновых фракций, проводимый в присутствии катализатора (окись молибдена — окись алюминия) нри температуре 480—540° и давлении водорода 7—20 ат. В Германии этот процесс известен как процесс ВНО. Процесс гидроформинга сильно эндотермический, что можно видеть из следующих уравнений [c.102]


    Рассмотрим особенности синтеза разнородных (гетерогенных) схем ректификации нефтяных смесей. В практике нефтегазопереработки такие схемы встречаются на установках каталитического риформинга бензиновых фракций и используются они для выделения ароматических углеводородов из катализатов риформинга. Гетерогенные схемы разделения включают несколько разнородных процессов обычную ректификацию, экстрактивную и азеотропную ректификацию, абсорбцию или экстракцию. [c.144]

    Основным достоинством схем двукратного испарения является их высокая технологическая гибкость. Наличие первой ступени, в которой выделяется растворенный в нефти газ и часть бензиновых фракций, позволяет компенсировать возможные колебания в составе нефти и обеспечивает более стабильную работу атмосферной колонны. Применение отбензинивающей колонны позволяет также снизить давление на сырьевом насосе и разгрузить печь от легких фракций. [c.157]

    В связи с внедрением в промышленности новых процессов переработки, а также изменением требований к ассортименту и качеству нефтепродуктов предлагается пересмотреть программу исследования нефтей с целью расширения и уточнения ее [21], Расширенной программой исследования нефтей предусматривается определение кривых разгонки нефти, устанавливающих зависимость выхода фракций от температуры кипения и определяющих их качество давления насыщенных паров содержания серы асфальтенов смол силикагелевых парафинов кислотного числа коксуемости зольности элементного состава основных эксплуатационных свойств топливных фракций (бензинов, керосинов, дизельного топлива) группового углеводородного состава узких бензиновых фракций выхода сырья для каталитического крекинга, его состава и содержания в нем примесей, дезактивирующих катализатор потенциального содержания дистиллятных и остаточных масел качества и выхода остатка. [c.35]

    Отметим еще некоторые варианты схем двукратного испарения нефти. С целью комбинирования процессов первичной перегонки нефт и гидроочистки топливных фракций перегонку нефти предлагается осуществлять при давлении 2—7 МПа с предварительным подогревом нефти до 360—380 °С в присутствии водорода[ (20—500 м на 1 т сырья) с последующим обессериванием и ректификацией топливных фракций [10]. На рис. П1-7 показаны варианты технологических схем первичной перегонки нефти с гидро-обессериванием бензиновых фракций или всей суммы светлых фракций (бензина, керосина и дизельного топлива). [c.159]

    Схема трехкратного испарения нефти до мазута предлагается для перспективных высокопроизводительных установок АВТ мощностью 12 млн. т нефти в год [8] (рис. 1П-9). В схеме предусмотрены ступень предварительного отделения газа и бензиновых фракций в предварительном испарителе /ив отбензинивающей колонне 2, ступень атмосферной перегонки нефти в колонне 3 и ступень вакуумной перегонки в колонне 4 при 400—530 гПа для получения фракции тяжелого дизельного топлива и утяжеленного мазута. Разделение в последней ступени производится за счет тепла потоков атмосферной колонны, т. е. без дополнительного подогрева сырья. [c.160]

    Фракционный состав легких нефтяных фракций можно определять также хроматографическим методом [2, 3]. Разделение смесей проводится в колонке низкой эффективности длиной 1—4 м с неполярной жидкой фазой и линейным программированием температуры термостата колонки, т. е. с имитированием дистилляции. В указанных условиях разделения все компоненты смеси выводятся из колонки строго в порядке возрастания их температур кипения. Вследствие этого углеводороды, принадлежащие к разным классам, но имеющие одинаковые температуры кипения, выписываются одним пиком. Метод хроматографического анализа по сравнению с традиционными ректификационными методами имеет ряд преимуществ он позволяет наряду с фракционным составом смеси определять индивидуальный углеводородный состав бензиновых фракций, сокращает время анализа, уменьшает величину пробы, повышает надежность метода и позволяет использовать однотипную аппаратуру. [c.18]

    В настоящее время постоянно возрастает роль природного и попутного газов как сырья для нефтехимических производств. В связи с этим автор останавливается на методах выделения бензиновых фракций из попутного газа нефтедобычи. [c.6]

    Бензиновая фракция н. к. —180 °С используется как сырье установки вторичной перегонки бензинов (вторичной ректификации). [c.150]

Таблица IV. I. Требования к чистоте узких бензиновых фракций как к сырью каталитического риформинга [1] Таблица IV. I. Требования к чистоте <a href="/info/1609148">узких бензиновых фракций</a> как к <a href="/info/27024">сырью каталитического</a> риформинга [1]

    Платформинг-нроцесс получил дальнейшее развитие в ряде процессов каталитического риформинга, которые все направлены на улучшение антидетонационных свойств бензиновых фракций и основаны в первую очередь [c.104]

    Важнейшее значение для нефтехимической промышленности имеет большое количество водорода, получаемое при каталитическом риформинге. Подсчитано в среднем, что при каталитическом риформинге 100 л прямогонной бензиновой фракции освобождается около 8,2 водорода. Так как в будуш,ем термический риформинг будет, вероятно, полностью вытеснен каталитическими процессами, количество производимого таким способом водорода окажется очень значительным. Чистота водорода составляет 70—90% и он находится под давлением 14—50 ат. [c.106]

    Для получения бензола сначала из определенной бензиновой фракции методом четкой ректификации выделяют концентрат бензола, который должен содержать около 10% последнего, а затем методом экстрактивной перегонки получают 98— 99%-ный бензол с 90%-ным выходом. [c.108]

    Растворимость парафинов в бензиновых фракциях увеличивается с повышением молекулярного веса фракции примерно до 90, после чего снова начинает снижаться. Поэтому особенно пригодны в качестве [c.46]

    Фракцией называется часть (группа) углеводородов, выкипающая в определенном интервале температур. Все углеводороды, входящие в состав нефти и выкипающие при температурах 40—200° С, называют бензиновой фракцией. [c.10]

    Промежуточное положение между схемами однократного и двукратного испарения занимает схема с предварительным испарителем (рис. П1-5, а), получившая широкое распространение на отечественных заводах. По этой схеме часть легких бензиновых фракций после нагрева нефти в теплообменниках отделяется от нефти в предварительном испарителе, и, минуя печь, подается на разделение в основную ректификационную колонну вместе с частично отбензиненной нефтью [2], либо подается вместе с водяным паром под нижнюю тарелку колонны [5]. [c.155]

    Схемой двукратного испарения (рис. П1-6,а) предусматривается выделение газа и легких бензиновых фракций (до 140—160 °С) в ректификационной колонне (if =180—220 °С, Р = 0,2—0,8 МПа) с последующим разделением частично отбензиненной нефти на топливные фракции и мазут в ректификационной колонне с боковыми отпарными секциями 2 (/ =350—380°С, Р = 0,11—0,2 МПа). [c.157]

    Снижение давления перегонки нефти в основной колонне с 0,2 до 0,1 МПа и в секциях отпарки фракций керосина и дизельного топлива — до 685 гПа обеспечило удовлетворительное отделение легких фракций без водяного пара и подогрева низа отпарных секций, т. е. за счет тепла самих потоков-. При этом из фракции дизельного топлива 215—350°С при температуре верха отпарной секции 200°С и давлении 0,118 МПа отбирается до 4% керосиновой фракции 135—215°С и из керосиновой фракции 135—215°С при 0,1 МПа отбирается до 6% бензиновых фракций 80—135 С [32]. [c.172]

    Крекинг-процесс служит для превращения высококипящих (выше темпе]эатуры иинеиня бензина) составных частей нефти в смесь углеводородов, кипящих в интервале, типи Jпoм для бензиновых фракций. В ирин-ципе возмо киы два различные вида крекинга — термический и каталитический. [c.37]

    В схемах перегонки нефти иногда используют рециркуляцию потоков, например, возврат легкой или тяжелой бензиновой фракций из атмосферной колонны в отбензинивающую [12], возврат [c.160]

    С целью иллюстрации области применения перегонки и ректификации в нефтепереработке на рисунке изображена условная поточная схема переработки нефти, составленная из схем, приведенных в работах [1]. Как видно из приведенной схемы, перегонка и ректификация составляют основу таких процессов, как первичная перегонка нефти, вторичная перегонка бензиновых фракций и га-зоразделение. Перегонка играет также немаловажную роль практически во всех химических процессах переработки нефтяного сырья крекинге, риформинге, пиролизе, гидроочнстке, алкилировании, изомеризации н т. д. [c.15]

    При подаче 0,18% (масс.) на мазут водяного пара в. змеевик печи сокращается в два раза время пребывания мазута в печи и в два раза уменьшается выход газов разложения. В случае применения в вакуумсоздающих системах конденсаторов смешения примерно 30—40%) сероводорода и низкокипящих углеводородов растворяются в охлажденной воде и не доходят до последнего эжектора. В то же время при использовании конденсаторов поверхностного типа в выбросных газах эжекторов остаются бензиновые фракции, выход которых на мазут примерно равен выходу газов разложения и образовавшегося при разложения мазута сероводорода. [c.202]

    Условия процесса температура 75 С абсолютное давление 2,5 ат, (2,45 бар). Время пребывания (считая на бензин) 3,5 ч. Бензиновая фракция, испольнуемая в качестве растворителя, имеет плотность 0,70, среднюю молекулярную температуру кипения 90 С и молекулярный вес 95. [c.303]

    Нефть центробежным насосом 5 подается под давлением через три теплообменника 4, грязеотделитель 10 и мазутные теплообменники II и, нагретая до 170—175°, поступает в трубчатую псчь 1. Нагретая в печи до 330 и частично испарившаяся, нефть поступает в рект фикационную колонну 2, снабженную выносными отпарными секциями 3. С верха колонны отбирают бензиновую фракцию, а с боковых отпарных секций — лигроиновую, керосиновую и газой-левую. Пары бензина конденсируются и охлаждаются в теплообменнике и холодильнике 6. Проходя через газосепаратор 7, бензин тюступает в приемник 8, откуда часть бензина насосом 9 отбирается для орошения колонны. Остальные фракции, проходя теплообменники и холодильники, направляются в приемники. Мазут с низа колонны прокачивается насосом /2 через теплообменники 11 и холодильник в приемники. Существует различное конструктивное оформление установок прямой перегонки. [c.6]

Рис. 1П-7. Комбинирование процесса первичной перегонки нефти с гидроочнсткой бензиновых фракций (а) и топливных фракций (б) Рис. 1П-7. Комбинирование <a href="/info/1455510">процесса первичной перегонки нефти</a> с гидроочнсткой <a href="/info/411310">бензиновых фракций</a> (а) и топливных фракций (б)
    В процессе Галла тяжелая бензиновая фракция нагревается в трубчатой печи до 750° при очень высоко скорости потока. При этом наблюдается значительное газообразование. Жидкая составпая часть продуктов реакции содержит 17—18% толуола, 18% бензола и 6% ксилолов. В настоящее время такой процесс в измененном виде и в условиях максимального ограничения коксообразовапия применяется в первую очередь для получения газообразных олефинов. Ароматические углеводороды при этом в известных условиях являются желательным побочным продуктом. [c.101]

    Современные способы получения бензола, толуола и ксилолов из нефти основаны на том, что подходящая но составу нрямогонная бензиновая фракция, богатая нафтеновыми углеводородами и уже содержащая некоторое количество ароматических, нодвергается каталитическому дегидрированию, нри котором циклогексаны дегидрируются в ароматические углеводороды, а алкнлциклонентаны изомеризуются в цикло-гоксаиы, которые тотчас же дегидрируются в производные бензола. Как моясно видеть из табл. 8, бензин из нефти нафтенового основания содержит до 55% нафтеновых углеводородов, которые в процессе риформинга превращаются в ароматические. [c.102]

    По окончании продукт реакции тотчас нейтрализуют 20%-ной натриевой щелочью, причем образуется паста. Для разрушения диалкилсульфатов эту пасту нагревают 1 час. Часть нейтрального масла гидротроино растворенного в продуктах реакции осаждают добавкой пропилового спирта, оставшуюся часть удаляют извлечением низкокипящей бензиновой фракцией [c.213]

    По данным [1], число ком понентов в бензиновых фракциях может достигать 500, а в масляных фракциях еще больше, т. е. чем более высотокипящей является фракция, тем из большего числа компоненто1В она состоит и тем сложнее углеводородные соединения, ее составляющие. [c.17]

    Исследования процессов перегонки и ректификации нефтяных смесей показывают, что среди различных физикохимических и термодинамических свойств наиболее сильное влияние на разделение оказывают константы фазового равновесия компонентов смеси. В ряде случаев, например, при четкой ректификации бензиновых фракций, относительная ошибка в расчете констант фазового равновесия компонентов до 20—30% приводит к изменению требуемого флег-мового числа в 1,5—2 раза [36], а прн низкотемпературном разделении природных газов ошибка в 4,5% требует увеличения числа теоретических тарелок на 10% и орошения на 5%, ошибка же в 15% приводит к снижению производительности на 2,4% [37]. Поэтому расчету констант фазового равновесия компонентов должно уделяться самое серь-10 г % езное внимание. [c.42]

    Двухколонную схему перегонки нефти используют при разделении нефтей с большим содержанием легких бензиновых фракций и растворенных в нефти газов, для переработки сильнообвод-ненных и сернистых нефтей. Недостатками схемы двукратного испарения является более высокая температура нагрева отбензи-ненной нефти, необходимость поддержания температуры низа первой колонны горячей струей, на что расходуется большое количе- [c.157]

    Из испарителя высокого давления снизу уходит бензиновая фракция (рис. 1П-7, а) или сумма светлых нефтепродуктов (рнс. 111-7,6) в последнем случае для четкого отделения светлых фракций от мазута предусматривается еще колонна вторичной перегонки. Очевидно, схема а предназначена для перегонки малосернистых нефтей, а схема б —для перегонки средне- и вьгсокосерни-стых нефтей. Комбинирование процессов первичной перегонки нефти и гидроочистки топливных фракций в одной технологической установке позволяет снизить эксплуатационные затраты на величину, необходимую для повторного нагрева топливных фракций в процессе их гидроочистки. [c.159]

    Недостатки, допущенные при проектировании колонн K-i, не позволяют должным образом обобщить данные по оптимальным флегмовым числам, расходу горячей струи и числу тарелок, так как высокое качество разделения достигалось на разных заводах при различных флегмовых числах, изменяющихся в пределах от 0,5 до 5, и расходе горячей струи от 30 до 50% от тепла исходной нефти. Поэтому для обеспечения высокого отбора (порядка 96%) широкой бензиновой фракции н. к.— 160°С со сравнительно небольшим налеганием температур кипения (25— 30 °С) рекомендуется при числе тарелок в колонне 25—30 иметь флегмовое число больше 5 [18] и расход горячей струи больше 80% от тепла, подводимого с сырьем [14]. Последующий опыт эксплуатации колонн К-1, лишенных указанных выше конструктивных недостатков, позволит, очевидно, скорректировать рекомендуемые флегмовые числа и расходы горячей струи. [c.164]

    Узкий фракционный состав бензольной и ксилольной фракций объясняется необходимостью иметь в сырье установок каталитического риформинга максимальное содержание соответственно бе -золо- и ксилолобразующих углеводородов. В табл. VI. 1 приведены допустимые содержания примесей в узких бензиновых фракциях, показывающие необходимость обеспечения достаточно высокой четкости ректификации. [c.207]


Смотреть страницы где упоминается термин Бензиновая фракция: [c.46]    [c.56]    [c.18]    [c.77]    [c.150]    [c.156]    [c.163]    [c.195]    [c.207]   
Углеводороды нефти (1957) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте