Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель каталитические свойства

    Осаждение покрытия происходит в том случае, если материал является катализатором для восстановительной реакции. Ввиду того, что углерод не является катализатором реакции восстановления ионов меди, никеля, поверхность углеродных волокон необходимо предварительно обработать, придав ей каталитические свойства. С этой целью углеродные волокна подвергают обработке в окислительной среде и проходят стадию сенсибилизации и активации прежде, чем покрываются из химического раствора металлом. Поверхностная обработка в окислительной среде положительно сказывается и на свойствах углеродного волокна при работе в композиционном материале повышается сила сцепления с основой, увеличивается прочность композиции на сдвиг [5]. [c.148]


    Показано [12], что адсорбционные и каталитические свойства никелевых катализаторов на одном и том же носителе в значительной мере зависят от способа приготовления и от температуры восстановления при высокой температуре восстановление приводит к очень активным, но чувствительным к ядам катализаторам, при низкой температуре — дает менее активный, ио более устойчивый контакт. При изменении температуры получается катализатор с разной степенью восстановления никеля до металла, и это влияет на активность [13]. А1 тивность никелевых катализаторов на кизельгуре падает при получении никелевого катализатора из исходных солей формиат>ацетат>оксалат>нитрат. При получении адсорбционных никелевых катализаторов на синтетическом алюмосиликате их активность в реакции гидрирования зависит от pH раствора никелевой соли [13]. [c.30]

    Активность никелевого катализатора зависит от температуры его приготовления. Никель, полученный восстановлением при низкой температуре (250—300°), очень активен, но восстановление при этой температуре продолжается долго и часто не доходит до конца. По мере возрастания температуры восстановления катализатор получается менее активный, а в случае восстановления при температуре свыше 450° никель почти полностью теряет свои каталитические свойства оптимальная температура восстановления 300—320°. Эту температуру можно снизить, [c.523]

    В работе - В.Козин показал, что никель, по сравнению с другими металлами, способен активнее сообщать отложениям углеродного вещества структурный порядок. Но на сернокислом никеле выход волокнистого углеродного вещества в 80 раз ниже, чем на металлическом никеле . О.Журкин оценивал каталитические свойства не только чистых металлов, но и двух- и трехкомпонентных катализаторов на основе соединений железа, кобальта и никеля, взятых в различных соотношениях, причем каталитическим системам почему-то приписывались интерметаллические свойства. Хотя при строгом рассмотрении,данные системы являются эвтектоидными сплавами. И если уж опираться не на терминологию, а лишь подчеркивать аналогичность свойств, то было бы точнее при подобных рассуждениях использовать термин гидриды интерметаллидов . Так как в исследованном факторном пространстве они являются более близкими (по наличию атомарного водорода в молекулярных решетках) аналогами многокомпонентных каталитических систем, составленных на основе переходных металлов подфуппы железа. [c.70]


    После многочисленных синтезов катализаторов )1а основе никеля удалось получить катализатор, имеющий достаточно вр.к 01 ую активность и пе изменяющий свои каталитические свойства после проведения воздушных регенераций с последующим восстановлением водородом при температуре [c.262]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]

    Почему-то принято считать, что после неудач, связанных с первыми попытками промышленного внедрения каталитических процессов (контактный способ синтеза серной кислоты, синтез аммиака и др.), интерес к катализу во второй половине XIX в. ослабел и возродился лишь к началу XX в. в связи с открытием П. Сабатье замечательных каталитических свойств никеля и других металлов. Это совершенно неверно, так как именно во второй половине XIX в. катализ обогатился многими теоретическими и экспериментальными работами, положенными в основу современного учения о катализе. [c.15]

    Существуют факты, которые указывают на важную роль свободных и слабо связанных электронов катализатора в каталитической реакции. К их числу можно отнести высокие каталитические свойства переходных металлов, обладающих незавершённой -оболочкой и возможностью перехода электронов в другую электронную оболочку каталитическую активность полупроводников, электроны которых могут осуществлять переходы между уровнями заполненной и свободной зоны и уровнями примесей наблюдающийся в некоторых случаях параллелизм между каталитическими свойствами и такими свойствами веществ, как электрическая проводимость и работа выхода электрона и т. п. Влияние работы выхода электрона на каталитическую активность иллюстрирует разложение пероксида водорода на меди или никеле. Одна из стадий этой реакции состоит в диссоциации молекулы пероксида водорода  [c.360]

    При осаждении металлических пленок химическим путем из раствора ионы металла восстанавливаются и осаждаются на подложке, которой приданы каталитические свойства. Химическое осаждение связано с восстановлением (приобретением электронов) иона металла с одновременным окислением (потерей электронов) восстанавливающего химического агента. Так, в щелочном растворе хлорида никеля при наличии надлежащего восстановителя (например, ионов гипофосфита) будут происходить следующие реакции  [c.87]

    Из этих данных следует, что наибольшее количество никеля, который можно заменить, находится в опорном скелете -электрода. При замене никеля опорного скелета железом материал катализатора не изменяется поэтому можно ожидать, что останутся неизменными и каталитические свойства электрода. Исходя из этого, была сделана попытка в первую очередь заменить железом карбонильный никель опорного скелета. [c.166]

    При гидрогенизационной переработке тяжелых фракций нефтей на поверхности катализаторов накапливаются различные металлы, ухудшающие каталитические свойства. К их числу относятся, прежде всего, ванадий, никель и железо. Эти металлы определяют фотоколори-метричеоким методом. [c.127]

    Например, яри изучении каталитических свойств комплексов никеля найдеи [67], что изомеризация гексена-1 в присутствии 0,5-10- моль катализатора в 1. заканчивается за доли секунды. Учитывая, что при Ск— ЫО моль/л Тг имее порядок 10-= с, в этих исследованиях влияние диффузионного торможения мал1 вероятно. [c.132]

    Разработаны специальные модификации катализаторов и промоторов, позволяющие осуществлять в регенераторе окисление оксида углерода в диоксид, улавливание оксидов серы из дымовых газов регенерации и последующее их восстановление в сероводород в зоне крекинга, повышать на 3—4 пункта октановое число (и. м.). У катализаторов последних модификаций резко выросла способность сохранять каталитические свойства при осаждении больших количеств металлов из сырья. Так, на обычных промышленных цеолитсодержащих катализаторах при суммарном содержании никеля и ванадия 0,5% конверсия сырья снижается более чем в 2 раза, резко ухудшается селективность кре-КИН13, повышается выход кокса, сухого газа и водорода. На специально приготовленных цеолитсодержащих катализаторах в этих же условиях конверсия сырья практически не снижается, селективность изменяется незначительно. [c.115]


    Для процессов электроокнсления и электросинтеза, особенно при высоких анодных потенциалах, перспективными оказываются различные оксидные системы, в основном оксиды переходных металлов и их композиции оксиды никеля, кобальта, серебра, меди, оксидные рутениево-титановые аноды (ОРТА). Использование оксидов объясняется тем фактом, что при высоких анодных потенциалах они устойчивы и обладают достаточно высокими электро-каталитическими свойствами. [c.301]

    Работа топливного элемента во многом зависит от используемых электродов. Не всякий материал пригоден для изготовления электродов. Ускорить реакции в топливном элементе можно только с помощью электродов, обладающих высокими каталитическими свойствами. Материалом для таких электродов могут служить никель, металлы группы платины, угли с сильно развитой поверхностью, на которую наносят катализаторы, — мелкодисперсные порошки платины, родия и т. п. Элек- [c.492]

    Химическое восстановление никеля является автокаталити-ческой реакцией, так как металл, образовавшийся в результате химического восстановления из раствора, катализирует дальнейшую реакцию восстановления этого же металла Но для начального периода восстановления метапла необходимо, чтобы покрываемая поверхность имела каталитические свойства, которые создаются в результате выполнения операции называемой активированием Активирование заключается в том что на обрабатываемую поверхность химическим путем наносят чрезвычайно малые количества металлов, являющихся катализаторами реакции химического восстановления никеля Такими катализаторами являются коллоидные частицы или малорастворимые соединения палладия, платины золота серебра Самое широкое распростране[[ие получил палладий обладающий высокой каталитической активностью Образование каталитического слоя в виде металла, находя щегося в коллоидном состоянии, осуществляется в две стадии [c.38]

    Предполагая, что при замене азотной кислоты ее солями нитрующая смесь все же будет достаточно активной ввиду каталитических свойств уксусного ангидрида, Менке изучил нитрование ароматических соединений смесями уксусного ангидрида с нитратами, имеющими достаточно низкие температуры разложения (к числу этих нитратов относятся нитраты железа, меди, никеля, кобальта, алюминия, церия и ряд нитратов других металлов I, II, III, IV и VIII групп периодической системы). Опыты Менке показали, что из этих соединений нитраты щелочных металлов не обладают нитрующим действием или же реагируют лишь в слабой степени. [c.435]

    Исследовались каталитические свойства многочисленных сильных кислот фтористого водорода, фтористого бора, галоидсульфоновых кислот, этансульфоновой кислоты и др. Однако ббльшая часть экспериментальных данных, используемых для выяснения механизма изомеризации насыщенных углеводородов, была получена с применением хлористого и бромистого алюминия, серной кислоты и алюмосиликатов. Поэтому рассмотрение реакций изомеризации, катализируемых сильными кислотами, будет ограничено реакциями, протекающими на перечисленных четырех катализаторах. По тем же причинам обсуждение изомеризации в присутствии гидрирующих катализаторов на кислотных носителях будет ограничено реакциями, протекающими в присутствии платины на содержащей галоид окиси алюминия, никеля на алюмосиликатах и алюмомолйбденового катализатора. [c.88]

    Для обеспечения большей дисперсии металлов в углеродном веществе, а также с целью создания механически прочных и термостабильных углеродных волокон, обладающих каталитическими свойствами, в качестве катализаторов были испытаны композиции ультрадисперсных оксидов металлов, включающих в равном соотношении по массе оксиды меди, хрома, марганца, кобальта, никеля, железа. Наи-бодьшей активностью в отношении реакции образования углеродных отложений обладает композиция, составленная на основе оксидов меди -хрома - кобальта - никеля -марганца (массовой выход углеродцого вещества в процентах на исходную навеску катализатора при продолжцтельнрсти опыта 5 [c.71]

    Во избежание влияния материала реакционного пространства На результаты исследований все опыты на выше перечисленных катализаторах были проведены в реакторе из кварцевого стекла, так как оксид кремния не проявляет каталитических свойств в отношении реакции образования углеродного вещества. На практике стенки реактора выполняют Из различных марок стали. Поэтому исследовано влияние таких материалов, как сталь Mapkrt Ст.З и нержавеющая сталь марки 12Х18Н10Т на процесс образования углеродных отложений на никелевом катализаторе. Установлено , что вЫход углеродного вещества зависит от присутствия в реакционном пространств материалов, в состав которых входят атомы железа. При добавлении к обычной порции никелевого катализатора такого же количества стали Ст.З Массовый выход углеродного вещества из пропана снижается с 1950 (на нИкеле) до 400%, а при добавлении нержавеющей стали I2X18H10T - снижается до 800% (в массовых процентах на исходную навеску катализатора). Таким образом, наибольшее замедление процесса образования волокнистого углеродного вещества отмечается при добавлении стали марки Ст.З, а наименьшее - при [c.72]

    Выяснилось, что в начальный период работы активированные угли проявляют высокую активность, но быстро ее утрачивают при использовании их в качестве катализаторов разложения метана. Сложившееся представление о малой активности угольных контактов объясняется, вероятно, тем, что их каталитические свойства оценивались методически неверно (после того, как они зауглерожи-вались). Интересно, что повышенная степень разложения метана достигается при проведении реакции в пустом кварцевом реакторе в короткий начальный период его работы, если реактор ранее не использовался. Непосредственно после восстановления металлических катализаторов их активность максимальна. Все испытанные катализаторы по характеру изменения их активности при эксплуатации можно разделить на три группы. К первой относятся катализаторы, обладающие максимальной активностью в самом начале своей работы затем их активность быстро падает до очень низкого уровня (а .тивированные угли всех испытанных марок, никельглиноземный катализатор (ГИАП-3), содержащий небольшое количество никеля). Катализаторы второй группы после достижения максимума активности (в результате восстановления) сравнительно быстро ее снижают (сидерит, никель-хромовый катализатор). Катализаторы третьей группы лишь незначительно снижают свою активность по сравнению с максимальной (после восстановления)и сохраняют ее на высоко.м уровне длительное время (железо-хромовый и плавленный железный катализаторы). Железные катализаторы, относящиеся к последней группе, наиболее перспективны для практического применения. [c.113]

    Разложение гипохлорита в растворе в присутствии каталитически действующих гидроокисей кобальта, никеля, железа и меди подавляется добавкой солей свинца, хрома, мышьяка и некоторых других элементов. Гидроокись железа теряет свои каталитические свойства в присутствии в растворе избытка твердой (нерастворен-ной) гидроокиси кальция. Заслуживает внимания интенсивное ингибиторное действие активных препаратов двуокиси кремния на разложение растворов гипохлорита кальция, содержащих гидроокись железа [c.684]

    На грани XX в. П. Сабатье открыл замечательные каталитические свойства никеля, что явилось стимулом для многочисленных исследований по гидрированию, восстановлению и окислению разнообразных органических соединений и способствовало внедрению органического катализа в промышленность. К началу XX в. относятся работы В. Н. Ипатьева и Н. Д. Зелинского по гидрированию и дегидрированию органических соединений на металлах VIII грушш и оксиде никеля. В 1901 г. В. Н. Ипатьев сконструщювал ашхарат для проведения каталитических реакций при высоком давлении ("бомба Ипатьева ). Это явилось мощным толчком к разработке и созданию промышленных каталитических процессов под давлением. [c.633]

    При гетерогенном катализе реакция происходит на поверхности катализатора, поэтому особую роль играет величина поверхности, а также химический состав и структура поверхностного слоя катализатора. В свою очередь, структура катализатора зависит от способа его приготовления, в частности от термической обработки. Наилучшимн каталитическими свойствами обладают катализаторы, приготовленные прп возможно более низкой температуре и имеющие несовершенную кристаллическую структуру. Поэтому катализаторы на базе оксидов чаще всего получают разложением соответствующих гидроксидов или малоустойчивых солей — оксалатов, нитратов и т. д. Катализаторы на базе металлов обычно изготовляют путем восстановления их соединений водородом. Например, часто применяемый в качестве катализатора оксид алюминия полу чают обезвоживанием гидроксида при температуре не выше 400 °С. Никелевые катализаторы, используемые для реакций гидрирования, получают восстановлением оксида никеля водородом при 300 °С (если катализатор получать прп более высокой температуре, его активность снижается). [c.51]

    Тонкоизмельченный порошок никеля Ni, так называемый никель Ренея — пирофорный металл (т. е. самовоспламеняется на воздухе). Кроме того, он обладает каталитическими свойствами и способствует окислению органических веществ. [c.225]

    Решение этого вопроса требует специального изучения на основе современного состояния исследований каталитических свойств никеля Ренея [1] влияния на эти свойства никеля, алюминия, водорода, а также окиси алюминия и алюмоната калия, содержание которых зависит от анодной поляризации в процессе контролируемой активации. [c.163]

    Опыты по длительности работы позволяют установить, как изменяются электрохимические свойства (равновесный потенциал, поляризация и предельная плотность тока) ДСК-электродов спустя недели и месяцы их работы при анодной поляризации. Основанием такого рода изменений является изменение каталитических свойств материала электрода (никель Ренея, никель), в свою очередь связанных со следующими факторами  [c.215]

    Никелевый ДСК-электрод объединяет в себе большую каталитическую активность никеля Ренея с высокой прочностью и хорошей электро- и теплопроводностью опорного скелета из спеченного карбонильного никеля. Эти свойства делают возможным применение в качестве катализатора ДСК-электродов в таких химических реакциях, которые до сих пор проводились с обычным никелевым катализатором Ренея. Вероятно, это особенно целесообразно для реакций, п зоисхо-дящих в потоках газов и жидкостей смесь реагентов можно продавливать через диски из ДСК-материала. Благодаря хорошей теплопроводности электрода можно точно регулировать температуру катализатора и легко отводить избыточное тепло, возникающее во время реакции. Благодаря равномерной пористости ДСК-электрод обеспечивает эффективный подвод смеси реагентов к катализатору и отвод продуктов реакции. [c.316]


Смотреть страницы где упоминается термин Никель каталитические свойства: [c.331]    [c.332]    [c.334]    [c.335]    [c.143]    [c.172]    [c.95]    [c.279]    [c.313]    [c.20]    [c.45]    [c.193]    [c.523]    [c.96]    [c.662]    [c.172]    [c.329]    [c.172]   
Гетерогенный катализ в органической химии (1962) -- [ c.216 ]

Методы элементоорганической химии Кн 2 (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Никель, свойства



© 2024 chem21.info Реклама на сайте