Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизм ароматическом ряду

    Опубликован ряд исследований, где изложены результаты превращений углеводородов метанового, нафтенового и ароматическою рядов, а также ряда ненасыщенных углеводородов над алюмосиликатным катализатором, позволяющие установить химизм и механизм термо-каталитического крекинга. [c.437]

    Алкилгалогениды и спирты широко применяют в лабораторной практике при синтезе алкилбензолов. Использование их позв >-лило установить многие важнейшие закономерности реакций Ш в частности значительно расширить и углубить представления в механизме электрофильного замещения в ароматическом ряду. [c.105]


    Аналогично, для реакций электрофильного замещения в ароматическом ряду также можно ожидать наличия двух альтернативных механизмов. [c.314]

    В реакции используют большой избыток 025 04. Равновесие каждой стадии смещено вправо, так как реакция протекает с большим (максимальным из известных) изотопным эффектом А (0+) й (Н+) =9, т. е. протон отщепляется от а-комплекса в 9 раз легче, чем 0+. Образовавшийся в результате реакции полностью дейтерированный бензол используют для изучения механизма реакций электрофильного замещения в ароматическом ряду. [c.356]

    Механизм реакции электрофильного замещения в ароматическом ряду имеет много общего с механизмом электрофильного присоединения к этиленовым углеводородам (см. с. 68). В обоих случаях процесс носит ионный характер и является двухстадийным. Как и у непредельных углеводородов, у ароматического кольца имеются подвижные л-электроны, способные активно взаимодействовать с атакующими электрофильными реагентами. [c.282]

    Механизм реакции нуклеофильного замещения галогена в ароматическом ряду имеет свои особенности. Возможно, что при действии сильных нуклеофильных реагентов происходит вначале отщепление галогеноводорода с образованием очень активного промежуточного продукта — дегидробензола (бензина), который сразу же реагирует с нуклеофильным реагентом  [c.291]

    Этот наиболее важный механизм нуклеофильного замещения в ароматическом ряду состоит из двух стадий  [c.5]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]


    Отдельные стадии этого процесса являются не просто умозрительными предположениями, имеются экспериментальные факты, доказывающие такой механизм реакции замещения в ароматическом ряду. Наиболее подробно изучен механизм реакции нитрования, на примере которой мы и познакомимся с этой проблемой. [c.117]

    На примере реакций этилена и бензола с бромом сравните механизм электрофильного присоединения у алкенов с механизмом электрофильного замещения в ароматическом ряду. На какой стадии наблюдается различие и почему  [c.121]

    Опираясь на общий механизм электрофильного замещения в ароматическом ряду, объясните следующие факты а) при хлорировании бензола в присутствии бромида алюминия не образуется бромбензол б) при действии на бензол хлорида иода (I I) в присутствии солей серебра продуктом реакции является иод-бензол.  [c.121]

    Больщая группа реакций в ароматическом ряду протекает по механизму радикального нуклеофильного замещения И в [c.197]

    Столь значительное облегчение механического разрушения минерала в присутствии растворов кислот (химически активных сред) позволяет рекомендовать практически использовать хемомеханический эффект в различных технологических процессах, связанных с измельчением и разрушением минералов при помоле в шаровых мельницах, бурении горных пород (в частности, карбонатных) и т. п. При этом следует учитывать возможность коррозии (растворения) металлов и минералов кислотами — понизителями прочности. Для заш,иты технологического оборудования и инструмента от коррозии необходимо добавлять в растворы кислот ингибиторы кислотной коррозии металлов на основе непредельных органических соединений ароматического ряда. Эти ингибиторы сильно хемосорбируются на переходных металлах (железо) за счет донорно-акцеп-торного взаимодействия электронов непредельных связей органической молекулы с незавершенными электронными уровнями металла и лишены этой способности относительно минералов, взаимодействуя с ними по механизму физической адсорбции. Как показали исследования, добавка ингибитора КПИ-3 даже при повышенной его концентрации (0,3 г/л) существенно не отразилась на величине эффекта (кривая 6). Испытание этого раствора на буровом стенде показало снижение величины усилия при резании мрамора в два раза. [c.131]

    ОБЩИЙ МЕХАНИЗМ ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ В АРОМАТИЧЕСКОМ РЯДУ [c.598]

    В этой главе мы познакомимся с методами, которые используются для измерения подобных влияний на реакционную способность и ориентацию, с результатами этих измерений и теорией, объясняющей эти результаты. Естественно, эта теория основана на наиболее вероятном механизме для электрофильного замещения в ароматическом ряду мы рассмотрим этот механизм и доказательства, имеющиеся в его пользу. Прежде всего познакомимся с фактами. [c.332]

    Как мы увидим в разд. 12.7, алкилирование по Фриделю — Крафтсу представляет собой довольно сложный процесс. Очевидно, оно может протекать по двум механизмам. В настоящее время для нашего обсуждения существенно, что оба механизма укладываются в схему электрофильного замещения в ароматическом ряду. [c.341]

    Механизм электрофильного замеш,ения в ароматическом ряду общие положения [c.342]

    Электрофильное замещение в ароматическом ряду, по-видимому, протекает по единому механизму независимо от используемого конкретного реагента. В общем виде для реагента У2-схема будет выглядеть следующим образом  [c.342]

    Механизм электрофильного замещения в ароматическом ряду две стадии [c.344]

    Какова вероятная структура желтого вещества Выделение этого и аналогичных веществ служит веским доводом, подтверждающим рассматриваемый механизм замещения в ароматическом ряду. Почему это справедливо  [c.346]

    В разд. 11.11 было указано, что алкилирование по Фриделю — Крафтсу может протекать по двум механизмам. Оба механизма можно рассматривать как электрофильное замещение в ароматическом ряду они отличаются только природой электрофила. [c.364]

    Арилгалогениды обсуждаются в отдельной главе потому, что они очень сильно отличаются от алкилгалогенидов по методам синтеза и свойствам. Арилгалогениды в целом относительно не реакционноспособны в реакциях нуклеофильного замещения, которые столь характерны для алкилгалогенидов. Однако присутствие некоторых других групп в ароматическом кольце резко повышает реакционную способность арилгалогенидов в отсутствие подобных групп реакцию все же удается осуществить, но лишь при использовании очень сильно основных реагентов или высоких температур. Мы покажем, что существуют два механизма нуклеофильного замещения в ароматическом ряду механизм бимолекулярного замещения (для активированных арилгалогенидов) и механизм элиминирования — присоединения, который включает образование очень интересного промежуточного соединения, называемого дегидробензолом. [c.781]


    Нуклеофильное замещение в ароматическом ряду бимолекулярный механизм [c.792]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    Однако при высокой температуре возможно галогенирование ароматических соединений и по радикальному механизму. Так, бромированне бромбензола при 450—500 °С ведет к преимущественному образованию л1-дибромбензола, тогда как обычно в соответствии с правилами ориентации образуется смесь о- и п-дибром-бензолов. Разница в механизмах галогенирования соединеиий жирного и ароматического рядов ведет к тому, что в присутствии Fe lj галогенирование жирно-ароматических соединений можно направить в ядро, тогда как УФ-облучение и повышенная температура способствуют замещению водородного атома в боковых цепях. [c.390]

    Многие другие реакции в ароматическом ряду протекают по механизму, показанному выше для образования соединения 8 (электрофильное замещение). К их числу, в частности относится реакция толуола с ацетилхлоридом в присутствии хлорида алюминия [реакция (3) на схеме 2.3 (реакция Фридс-ля—Крафтса)]. Здесь реагентом является комплекс H3 O I-AI I3, который служит источником катиона ацетилия, СНзСО , реагирующего с толуолом с образованием о-комплекса, аналогичного комплексу 13, [c.74]

    Прямое введение альдегидной группы в ароматическое ядро — наиболее широко используемая и важная реакция эта реакция подробно обсуждена в недавно опубликованной работе [1]. Классическими методами являются методы Гаттермана (разд. В.1) и Гаттер-мана — Коха (разд. В.2), однако бо-лее современные способы, такие, как применение смесн хлорокиси фосфора и диметилформамида (разд. В.6) и дихлорметилового эфира (разд. В.4), проще и, по-ви-димому, лучн1е старых методов. Более того, показано, что система фтористый формил — трехфтористый бор также может успешно применяться в качестве формилирующего агента (разд. В.З). В этом разделе принято относить к реакциям типа Фриделя — Крафтса не только замещение в ароматическом ряду, но и любые реакции, в которых положительный электроноакцепторный реагент атакует ненасыщенный центр, образуя производное альдегида. Таким образом, здесь рассматривается ацилирование или замещение олефинов илн виниловых эфиров. Арилирование через соли диазония также включено, хотя механизм этой реакции не вполне ясен (разд. В. 11). [c.49]

    Еще в конце XIX в. Чарльз Фридель и Джеймс Мэзон Крафте начали свои классические опыты по замещению атомов водорода, связанных с бензольным кольцом, другими реагентами, которые мы теперь называем электро-фильными. Более 50 лет детальный механизм таких реакций электрофильного замещенпя в ароматическом ряду все еще оставался тайной. Основная заслуга в раскрытии секретов этих реакций принадлежит Ларсу Меландеру с его изящными экспериментами по изучению влияния изотопного замещения на скорость замещения в ароматическом ряду. Однако, чтобы создать подробную, хотя все еще неполную картину этих процессов, потребовались усилия многих ученых, таких, как Уэланд, Цолингер, Галеви, де ла Мар, Хэммонд, Браун, Рид, Ола, Дьюар и Голд .  [c.591]

    Иа рие. 22-3 дан эиергетический профиль идеализированного нуклеофильного замещения в ароматическом ряду. Как и в случае большинства реакции электрофильного замещения в ароматическом ряду, скорость процесса определяется скоростью нарушения ароматической я-системы. Доказательством этого механизма мол но считать выделение высокостабилизиро- [c.275]

    Тогда становится понятным направление замыкания цикла в двух указанных окисях ), и можно предсказать образование соединений Illa из масляного альдегида. Если промежуточный бирадикал недостаточно стабилизован заместителями (как в случае а-олефинов с длинной цепью и циклогексена),.то происходит присоединение по Харашу. В противном случае может произойти атака активированного атома водорода, как это наблюдается при образовании карбинола. Приведенные соображения носят умозрительный характер, так как необязателен одинаковый механизм реакций с участием альдегидов и кетонов алифатического и ароматического рядов. ЯМР-Спектры веществ, полученных из масляного альдегида и дейтеромасляного альдегида, указывают на присутствие двух и соответственно одного атомов водорода у атома углерода, связанного с атомом кислорода эти данные подтверждают строение И1 [51] и, следовательно, всю приведенную схему. Строение циклической окиси HI было полностью подтверждено результатами исследования продуктов распада методом масс-спектрометрии [52]. [c.380]

    Катализируемое медью(1) замещение галогена в ароматическом ряду анионами, включая другие атомы галогенов, протекает гладко в ДМФА, ДМСО и N-метилпирролидоне при ПО—180° [151 ] и часто с почти количественными выходами. Механизм реакции может быть свободно-радикальным и, несомненно, не сводится просто к механизму 5jvAr. [c.39]

    Таким образом, электрофильное замещение, подобно электрофильному присоединению, представляет собой ступенчатый процесс, протекающий через стадию образования карбониевого нона. Эти две реакции отличаются, однако, судьбой иона карбония. Хотя механизм нитрования, по-видимому, лучше изучен, чем механизмы других реакций замещения в ароматическом ряду, кажется справедливым утверждение, что все эти реакции протекают по аналогичной схеме. [c.339]


Смотреть страницы где упоминается термин Механизм ароматическом ряду: [c.97]    [c.42]    [c.285]    [c.85]    [c.153]    [c.346]    [c.348]    [c.1185]    [c.1205]    [c.1229]    [c.1735]    [c.598]    [c.280]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.337 ]




ПОИСК







© 2024 chem21.info Реклама на сайте