Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Длина связи органических молекулах

    Предположения сводятся к тому, что экстрагент — донор электронов — тем эффективнее, чем выше электронная плотность на функциональном атоме и чем слабее этот атом связан с остальной частью молекулы, ибо тогда выше его способность образовывать координационную связь. Например, в настоящее время принято, что экстракционная способность фос-форорганических экстрагентов определяется донорными свойствами группы Р=0, т. е. электронной плотностью на атоме кислорода [63]. Установлено наличие корреляции экстракционной способности с полярностью связи Р=0 для ряда фосфорорганических соединений [64], а также с электроотрицательностью групп-заместителей, входящих в состав фосфорорганических соединений, аминов и органических кислот [60, 61]. Ответственной за экстракционную способность, считается энергия связи Р=0, которая определяет длину связи, следовательно, и электронную плотность на атоме кислорода, частоту колебаний Р=0 связи в ИК-спектре и полярность [c.16]


    Электроны, участвующие в образовании двойной и тройной связей органических молекул, относительно легко возбуждаются под действием излучения, поэтому вещества с ненасыщенными связями обычно обладают максимумами поглощения, используемыми в анализе. Органические функциональные группы с ненасыщенными связями, поглощающие в видимой и УФ-областях, называют хромофорами. В табл. 24-1 перечислены наиболее известные хромофоры и указано примерное положение их максимумов поглощения. Данные о длине волны и интенсивности поглощения в максимуме могут служить лишь приблизительным критерием при идентификации вещества, так как на положение максимума влияют растворители и структурные особенности соединения. Более того, если два хромофора сопряжены, наблюдается сдвиг максимума, обычно в длинноволновую область. Наконец, полосы в видимой и УФ-областях, как правило, уширяются вследствие колебательных эффектов, поэтому точное определение положения максимума затруднено. [c.141]

Рис. 4.3. Изменения средней относительной ошибки ) в зависимости от длин волны при определении а) температуры кипения инертных газов б) температура кипения л-электронных органических молекул по уравнению квазилинейной связи. Рис. 4.3. <a href="/info/1905735">Изменения средней</a> <a href="/info/207874">относительной ошибки</a> ) в зависимости от <a href="/info/2957">длин волны</a> при определении а) <a href="/info/986111">температуры кипения инертных газов</a> б) <a href="/info/6377">температура кипения</a> л-<a href="/info/468331">электронных органических молекул</a> по <a href="/info/1417982">уравнению квазилинейной</a> связи.
    СРЕДНИЕ ЗНАЧЕНИЯ ДЛИН СВЯЗЕЙ В МОЛЕКУЛАХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.352]

    Фактически мы уже пользовались аддитивными схемами при вычислении дипольных моментов органических соединений, длин связей в молекулах. В последующих задачах применение аддитивных схем расчета рассматривается несколько более подробно на примере вычисления энтальпий образования органических соединений. При этом отдельным связям приписываются определенные вклады в энтальпию образования соединения, которая рассчитывается как сумма энтальпий отдельных связей. [c.9]

    Образующиеся в процессе фотосинтеза органические вещества и заключенная в них химическая энергия служат основным источником материи и энергии для жизни всего органического мира нашей планеты. Необходимо, однако, учитывать, что создаваемые зеленым растением ассимиляты принадлежат в основной своей массе к веществам запасным, неспецифическим. Их использование другими формами организмов и синтез на этой основе специфических для того или иного вида соединений возможны лишь после сложной и длинной цепи предварительных преобразований. То же относится и к содержащейся в продуктах фотосинтеза энергии. Будучи заключена в химических связях органической молекулы эта энергия не может быть непосредственно использована клеткой для осуществления того или иного вида биологического действия, той или иной биологической работы . Для того чтобы потенциальная энергия органического вещества превратилась в движущую силу процессов жизнедеятельности организма, ей должна быть придана более активная, мобильная форма. Из предыдущих глав книги мы знаем, что в биологических системах это достигается через преодоление активационного барьера, в результате чего становится осуществимо получение нагруженного энергией электрона и последующее аккумулирование энергии последнего в форме специфических макроэргических соединений (АТФ и др). Вся сложная цепь взаимосвязанных процессов мобилизации продуктов фотосинтеза посредством их активирования в химическом и энергетическом отношениях осуществляется организмами в акте дыхания. Эти процессы протека- [c.208]


    Каждая конформация характеризуется своим набором расстояний между несвязанными атомами, а следовательно, своей суммой несвязанных взаимодействий (отталкиваний несвязанных атомов). Таким образом, разные конформации любой органической молекулы обычно энергетически неравноценны, даже если длины всех ее связей и валентные углы не отклонены от нормы. [c.16]

    При расчетах простых молекул все атомные орбитали принято считать ортогональными. Это позволило избавиться от интегралов S,y, приравненных нулю. Такого упрощения можно избежать, вводя соответствующую поправку иа интеграл перекрывания, являющуюся функцией длины С— С-связи. Если в органической молекуле присутствуют гетероатомы, то интегралы а и р не будут одинаковыми для всех атомов, включая и атомы углерода. Эти изменения выражаются в эмпирических параметрах так, что [c.58]

    Мольная рефракция, как и показатель преломления, на основании которого она определяется, зависит от длины световой волны. Показатель преломления и мольная рефракция получены для многих веществ при различных условиях. При этом оказалось, что, несмотря на сильную зависимость показателя преломления от условий, в которых находится вещество, его мольная рефракция для колебаний волн одинаковой длины практически на зависит от температуры и давления, а изменение агрегатного состояния лишь слабо сказывается на ней. Так, например, мольная рефракция воды при 0 20 и 100° С и водяного пара при 100 С соответственно равна 3,715 3,715 3,716 3,729. Следовательно, мольную рефракцию можно рассматривать как характерную константу данного вещества. Мольная рефракция обладает аддитивными свойствами. Рефракция неорганических соединений складывается из рефракций ионов рефракция органических молекул складывается из рефракции атомов, групп и связей. [c.53]

    Постоянство ориентации органических диполей на поверхности раствора можно объяснить тем, что углеводородный радикал частично выходит в газовую фазу, и органические молекулы представляют собой как бы поплавки, плавающие в вертикальном положении на поверхности раствора. Такая модель, развитая в работах И. Лэнгмюра и Л. Г. Гурвича, подтверждается тем, что при переходе от одного спирта к другому с иной длиной цепи предельный адсорбционный скачок потенциала остается почти постоянным (фдг 350 мв). У эфиров адсорбционный скачок больше, так как он обусловлен наличием двух связей С—О в молекуле простого эфира (фдг 550 мв). Доказательством данной ориентации органических молекул является также тот факт, что введение галоидов в углеводородную часть молекулы органического вещества уменьшает положительный скачок потенциала или изменяет знак Дф. В табл. 3 приведены значения фл для хлорзамещенных уксусных кислот. [c.95]

    Простые молекулы насыщенных органических соединений (метан, этан) имеют характерные полосы в вакуумной области. Появление в соединениях кратной связи вызывает сдвиг поглощения в сторону больших длин волн. Так, в спектре этилена появляется интенсивная полоса при к = 1800 нм. Наличие сопряженных двойных связей в молекулах [c.53]

    Оптические исследования позволяют выявлять структуру молекулы, рассчитывать длину связей, энергетические уровни, обнаруживать внутри- и межмолекулярные взаимодействия. Так называемые цветные реакции являются основой методов количественного и качественного неорганического анализа, а также большинства методов органического анализа. Если учесть, что оптические измерения сравнительно легки, их результаты доступны для количественных оценок и наглядны в интерпретации, то ясно, что значение оптических исследований для хи мии трудно переоценить. [c.130]

    Для кристаллов с ковалентной связью характерно значительное перекрывание электронных оболочек атомов. В алмазе, например, четыре внешние электрона атома углерода обобществлены четырьмя соседними атомами. Образуется простирающаяся по всему объему кристалла тетраэдрическая сетка связей С—С, прочность которых того же порядка, что и связь между атомами углерода в органических молекулах (и та же длина связи 1,54-10 см). Кристалл является прочным, плавится при высоких температурах. Ковалентные кристаллы образованы элементами, промежуточными между металлами и неметаллами. [c.176]

    Благодаря применению современных физических методов исследования появилась возможность с большой точностью определять расстояния между атомами (длины связей) и валентные углы, т. е. получать точные данные о реальной геометрической форме органических молекул. Это дают прямые определения методами рентгенографии и электронографии, вычисления из спектральных данных, из дипольных моментов и др. [c.65]

    Переход от простейшего органического вещества — метана, к его ближайшему гомологу —этану ставит перед исследователем новые проблемы пространственного строения, для решения которых недостаточно знать рассмотренные в разделе 1.3 параметры. В самом деле, не изменяя ни валентных углов, ни длин связей, можно представить себе множество геометрических форм молекулы этана. Эти формы отличаются друг от друга взаимным поворотом углеродных тетраэдров вокруг соединяющей их связи С—С. [c.27]


    Вторая эпоха характеризовалась отсутствием избытка свободного водорода и началом медленного нарастания (в результате радиолиза воды) концентрации свободного кислорода, а также последующего появления в высоких слоях земной газовой оболочки вначале слабого, но все же поглощающего самые короткие ультрафиолетовые волны озонного панцыря последний начал предохранять земную поверхность от стерилизации. Б связи с этим ультрафиолетовая фотохимия постепенно начала вытесняться на земной поверхности фотохимическими реакциями синтеза под действием видимого света с его более длинными волнами. Окрашенные пигменты (хлорофилл, гемоглобин, гемоцианин), имеющие в молекулярном скелете порфириновую группировку из четырех пятичленных пиррольных колец с атомами Mg, Ре, Со и Си, в их центре рождались теперь в воде океана и смогли наравне с другими сложными органическими молекулами сохранять свое существование, тогда как раньше короткий ультрафиолет разложил бы их на осколки так же, как он стерилизовал все живое. [c.375]

    С ростом длины цепи органической молекулы разрыв по С—С-связям происходит в меньшей мере и степень дегидрирования падает. Так, если в растворах этана и пропана на фоне 1 н. H2SO4 при 80—90°С на Pt-электроде в значительных количествах присутствуют частицы типа I, то в случае м-гексана уже почти все хемосорбированное вещество является трудноокисляемым и удаляется с поверхности гидрированием. Предполагая, что хемосорбцию гексана приближенно можно описать реакцией eHt -i-- (СбН14 х)адс+- Надс, ИЗ электрохимических данных можно оценить среднее число х = 2 5, что указывает на относительно небольшую степень дегидрирования молекул w-гексана. [c.103]

    Влияние концентрации вещества, температуры и числа углеродных атомов в молекуле (в случае гомологов) на зависимость величин адсорбции от Ет схематично показано на рис. 3.10. Направление стрелки отражает тенденцию к смещению по оси потенциалов соответствующей ветви кривой с ростом параметра, указанного возле стрелки. Смещение впра во анодного участка спада величины адсорбции с ростом Пс в основном связано с возрастанием доли трудноокисляемых частиц в продуктах хемосорбции с увеличением длины цепи органической молекулы сдвиг в том же направлении с ростом концентрации — с возрастанием скорости накопления продуктов хемосорбции. Обычно наблюдаемое падение величин адсорбции при том же Ет с ростом Т (на анодном участке кривой) связано как с более глубокой степенью дегидрирования хемосорбированных частиц с увеличением температуры, так и с тем, что значения энергии активации для процесса хемосорбции, как правило, ниже эффективных значений энергий активации электродесорбции хемосорбированных частиц. Смещение влево катодного участка кривой с ростом концентрации определяется увеличением скорости хемосорбции. Влияние лс и 7 на эту ветвь менее определенно. [c.114]

    Интересный случай разделения сложных эфиров цис- и транс-жирных кислот был выполнен на колонке длиной 160 см, заполненной амберлистом XN-1005 в Ag+-фopмe [10]. Образец, содержащий по 0,6 ммоля метилолеата и метилэлаидата, вымывали метанолом. Ион серебра образует комплексы с двойной связью органических молекул (гл. 8, разд. Б.III.б.8).Так как комплексы [c.269]

    Здесь начинается наиболее важный этап процесса нефтеобразования, называемый катагенезом. В процессе катагенеза происходит окончательное согревание, перестройка органических молекул, изменение их стереохимии, а главное — разрыв СЕЯзей между минеральной частью керогена и органическими молекулами. Кроме того, протекает, конечно, статистичный разрыв С—С-связей длинных али- [c.183]

    Изучение процесса термической диссоциации на примере таких простых по химическому строению и составу соединений, какими являются алканы, важно для выяснения величин энергий индивидуальных химических связей органических соединений, а также решения тонкого вопроса о взаимном влиянии связей в молекуле с различной длиной и строением углеродной цепи. Весьма заманчиво использовать изучение термического распада регулярно построенных алканов в целях химической кинетики — выяснения влияния длины углеродной цепи и ее строения на динамические параметры реакций распада (энергия активации, стерический фактор и др.) и построения моделей или механизма превращений. Дястаточно напомнить, что учение о мономолекулярных реакциях и теория этих процессов — большой раздел химической кинетики, который в значительной степени опирается на экспериментальное изучение реакций термической диссоциации различных соединений, в том числе и углеводородов. [c.3]

    Волновая функция метода МО ЛКАО может быть составлена из множества АО. В выражение для энергии, рассчитанное с этой функцией, будут входить интегралы подобные кулоновскому, резонансному и интегралу перекрывания [см. 26, формулы (3.—10)], но более сложные по виду, число их может достигать сотен тысяч. Можно пойти двумя разными путями не вычислять интегралы, а принять для них какие-либо значения на основании физических представлений, частью интегралов на тех же основаниях пренебречь. Такие методы расчета можно назвать полуэмпирическими. Они представляют интерес для получения весьма приближенной картины распределения электронной плотности, последовательности квантовых уровней энергии и т. п. Полуэмпирические методы применяют в основном при исследовании молекул органических соединений. Из этих методов лучшие результаты дает метод МЧПДПгЗ, развитый Дьюаром (погрешность в длинах связей 0,002 нм, в углах 2—3°, в энергиях атомизации и активации 20 кДж/моль [к-36]). [c.148]

    Последние представляют собой бесцветные жидкости с т. пл. —25 (Мп) или +13 С (Не), малорастворимые в воде, но смешивающиеся со многими органическими растворителями. Разложение их на [Э2(СО)ю и Н2] идет прн обычных условиях лишь крайне медленно, а кислотные свойства выражены очень слабо (для производного марганца констарта диссоциации равна 8-10" дипольный момент молекулы ц = 0,70). Силовые константы связей Н—Мп и Н—Не равны соответственно 1,9 и 2,0, Для длины связи Н—Мп дается значение 1,43 А. При замене водорода на метильную группу устойчивость соединений сильно повышается получаемые взаимодействием СНз1 с ЫаЭ(С0)5 производные типа СНзЭ(СО)5 представляют собой устойчивые на воздухе бесцветные кристаллы с т. пл. 95 (Мп) или 120°С (Не). Дипольный момент СНзМп(СО)5 равен 0,7-9 (в бензоле). [c.516]

    Большие размеры многих органических молекул и различные типы связей в них делают важными волрос о взаимном влиянии атомов, пространственно разделенных в пределах молекулы и, соответственно, вопрос о влиянии конфигурации молекулы на это взаимодействие. Длинные цепи атомов, соединенных ст-связями (например, — С —С —С —С —С—), в определенной мере изолируют группы, находящиеся на концах цепи. Если эти группы химически активны, отличаются специфическими свойствами, содержат системы л-электронов, характеризуются типичным для данных связей спектром, то их относят к функциональным группам. Это, например, группы ОН, СООН, ЫНг, СНО, СЫ, СО и др. В инфракрасной области им соответствуют характерные полосы поглощения. [c.166]

    Поляризуемость органических молекул, г. е. подвижность электронов, существенно больше для я-овязей, чем для а-связей, и растет с увеличением длины л-электроиной системы. Поляризуемость органических молекул иа металлах симбатна рефракции, которую нетрудно рассчитать. Это позволило построить ряд адсорбционной способности реагирующих связей на металлах-катализаторах гидрирования, который хорошо согласуется с экапериментальными данными  [c.173]

    Малые длины связей между кайносимметричными и немногослойными атомами С позволяют совершаться перекрыванию облаков л-электронов, а потому для химии углерода весьл а характерны кратные связи в отличие от химии кремния. Углерод можно назвать полидесмогеном , т. е. элементом — образователем двойных и тройных связей. Эти связи настолько прочны (этому способствует заметно и энергия корреляции) и вместе с тем в отсутствие катализаторов и высоких температур настолько мало реакционноспособны (достаточно вспомнить необходимость платинового катализатора при гидрировании этиленовых производных), что органическая химия богата мономерами даже среди класса ненасыщенных соединений, молекулы которых могли бы полимеризоваться с разрывом кратных связей, если бы при помощи катализаторов была преодолена их инертность. Напомним, что и молекулы СО для своего сгорания в кислороде требуют катализаторов. Этилен полимеризуется при низких давлениях и температурах лишь в присутствии катализаторов, например, смеси триэтилалюминия и четыреххлористого титана. [c.358]


Смотреть страницы где упоминается термин Длина связи органических молекулах: [c.214]    [c.56]    [c.78]    [c.44]    [c.74]    [c.118]   
Экспериментальные основы структурной химии (1986) -- [ c.65 , c.66 , c.67 , c.103 , c.104 , c.105 , c.106 , c.107 , c.141 ]




ПОИСК





Смотрите так же термины и статьи:

Длина связи

Молекула длина связи

Молекулы связь

Органические молекулы



© 2025 chem21.info Реклама на сайте