Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбит тригональные

    Алифатические радикалы. Опубликовано много исследований спектров ЭПР монокристаллов облученных алифатических органических соединений [164]. Усилия исследователей были направлены главным образом на изучение таких веществ, которые легко образуют монокристаллы известной структуры. Излюбленными объектами в этой области являются насыщенные дикарбоновые кислоты, их соли и некоторые простые аминокислоты. Чаще всего при комнатной температуре обнаруживаются радикалы, в которых я-электрон центрирован на атоме углерода, образующем тригональную систему связей. Радикал обычно получается путем отщепления атома водорода от молекулы. В радикалах такого типа неспаренный электрон преимущественно локализуется на 2рг-орбитали тригонального углерода. Главная ось р-орбитали перпендикулярна плоскости радикала. На рис. 8-2 показана модель такой структуры. Поскольку ядро имеет нулевой спин, обыкновенно наблюдается только СТВ с протонами. В некоторых случаях можно наблюдать также расщепление на С. [c.182]


    Рис 13-3 Образование трех эквивалентных гибридных хр -орбиталей атома в результате составления линейных комбинаций из его 1 -, 2р,- и 2ру-орбиталей. Гибридные р -орбита-ли имеют плоскую тригональную ориентацию в пространстве. [c.554]

    Для молекулы типа СНз гибридизацию называют тригональной, три гибридные 7-орбитали (обозначаемые как зр ) направлены от центра (атом С) к вершинам треугольника (атомы Н). Для построения ЛМО в линейной молекуле ВеНа и ей подобных используют две гибридные 5р-орбитали, образованные смешением одной 5- и одной р-функций. Эту гибридизацию называют диагональной обе у-орби- али располагаются вдоль одной прямой под углом 180 . -Орбиталь зр, зр или зр ) можно изобразить схематически [c.101]

    Однако к ароматичности ведет не только секстетная конфигурация л-электронов. Согласно правилу 4п + 2 Хюккеля относительно устойчивыми плоскими моноциклическими системами атомов с тригональной гибридизацией являются только системы, содержащие 4л -f 2 электронов. Это правило следует из простой теории МОХ, в которой для л-электронной циклической системы низшая связывающая орбиталь всегда заполняется двумя электронами, а все более высокие связывающие орбитали дважды вырождены и заполнены четырьмя электронами. Если число таких орбиталей п, то л-электрон-ная оболочка заполняется 4л + 2 электронами. Следовательно, ароматическими будут плоские моноциклические соединения, содержащие 2, 6, 10, 14 и т. д. л-электронов. Правило Хюккеля хорошо подтверждается на опыте. [c.119]

    Суть объяснения состоит в следующем. Учитывая тригональную симметрию СНд-группы, можно построить три водородные групповые орбитали в виде ЛКАО з-типа. Одна из этих орбиталей (обозначим ее Аг) будет иметь симметрию р -орбитали. Таким образом удается выделить из системы трех о-связей метильной группы л-составляющую, образованную атомной 2 р -орбиталью атома углерода и орбиталью /г . Например, молекулу пропилена в л-электронном приближении можно представить согласно схеме, учитывающей только л-электроны, в виде [c.172]

    Общеизвестно, что переходные металлы имеют -орбитали, которые лишь частично заполнены электронами. В растворе положительно заряженные ионы этих металлов могут легко соединяться с отрицательно заряженными ионами или другими небольшими электронодонорными химическими группами, называемыми лигандами, с образованием сложных ионов. Геометрия комплекса лиганд—металл зависит от природы иона металла. Комплекс может иметь структуру тетраэдра, плоского квадрата, тригональной бипирамиды или октаэдра. При обсуждении комплексов образованных ионами переходных металлов с лигандами, следует обращать внимание, во-первых, на природу связи лиганд — металл и, во-вторых, на геометрию образовавшегося комплекса. Именно эти факторы влияют на стабильность ионных комплексов. [c.351]


    В аммиаке орбитали атома азота представлены тремя 2р-орби-талями, оси которых взаимно перпендикулярны, и 25-орбиталью, занятой неподеленной парой электронов. В соединениях может наблюдаться тригональная 5р2-гибридизация, в результате которой образуются три валентные орбитали, а неподеленная пара занимает четвертую орбиталь. В гетероциклических соединениях, например в пиридине или пирроле, атом азота находится в состоянии, близком к тригональной р -гибридизации. В молекуле пиридина две из трех ар -орбиталей используются для ст-связи атома азота с соседними атомами углерода, третья, занятая неподеленной парой, в связывании не принимает участия. Все эти орбитали лежат в плоскости молекулы. Пятый электрон азота находится на р-орбитали ее ось перпендикулярна плоскости молекулы и параллельна плоскостям р-орбиталей атомов углерода. Этот электрон азота и принимает участие в сопряжении с л-системой атомов углерода кольца. [c.175]

    Оксид серы (VI) имеет плоские молекулы тригональной формы. В молекуле этого оксида имеются три двухцентровые а-связи, для построения которых атом серы использует 5р -орбитали. Три [c.191]

    В квадратных МЬ , тригональных МЬз и линейных МЬг комплексах нет групповой орбитали лигандов, которая могла бы перекрываться с одной р-АО металла в случаях МЬ и с двумя [c.221]

    Распределение электронов в атомах V, ЫЬ и Та для высшей степени возбуждения см. табл. 12.3 пять непарных электронов дают пять гибридных орбиталей, расположенных по осям симметрии тригональной бипирамиды, как это показано на рис. 175 для пентафторида ниобия. Атом ниобия в пентафториде обладает положительным потенциалом за счет оттянутых атомами фтора электронов и сохраняет свободные орбитали, т. е. является акцептором при образовании комплексных соединений  [c.336]

    Эту трудность можно обойти, если две аксиальные вершины в кластере [ЯЬ5(СО)15] рассматривать как аномальные, поставляющие для тригонально-бипирамидального скелетного связывания только 2 внутренние орбитали. Следствия этого таковы  [c.135]

    В тригональной бипирамиде степенями двух аксиальных и трех экваториальных вершин являются соответственно 3 и 4. Следовательно, если атомы аксиальных вершин поставляют для связывания 2 внутренние орбитали, а атомы экваториальных вершин — [c.135]

    Такой анализ связывания в тригонально-бипирамидальных кластерах переходных металлов, расположенных в периодической системе в конце соответствующих рядов переходных элементов, показывает, что вершины, содержащие атомы таких металлов, могут предоставлять только 2 внутренние орбитали для кластерного связывания. Эта тенденция расположенных в вершинах атомов пере- [c.136]

    Три 8р - Пл оская орбитали тригональная [c.44]

    Из ковалентных нитридов наибольшее практическое значение имеет нитрид водорода H3N — аммиак. В обычных условиях это бесцветный газ с резким удушаюш,им запахом. Молекула H3N имеет форму тригональной пирамиды ( nh — 0,1015 нм, HNH = 107,3°). Согласно теории валентных связей атом азота в молекуле H3N находится в состоянии sp -гибридизации. Из четырех sp -гибридных орбита- [c.346]

    ВзН см. разд. 13-2). В этой молекуле к центральному атому бора присоединены три атома водорода. Согласно теории локализованных молекулярных орбиталей, связь в этой молекуле осуществляется в результате гибридизации 2х-орбитали и двух 2р-орбиталей атома бора с образованием трех эквивалентных хр -гибридных орбиталей (рис. 13-3). Каждая гибридная орбиталь имеет на одну треть 5-характер и на две трети р-характер. Поскольку любые две р-орбитали лежат в одной плоскости, а х-орбиталь не имеет пространственной направленности, три хр -ги-бридные орбитали лежат в одной плоскости. Эти три хр -гибридные орбитали, перекрываясь с тремя водородными 1х-орбиталями, образуют три эквивалентные локализованные связывающие орбитали. Каждая из таких связывающих (хр -ь 1х)-орбиталей занята в молекуле ВН3 парой электронов, как это схематически показано на рис. 13-4. На основании представления о гибридньгх орбиталях можно предсказать, что молекула ВН3 должна иметь плоскую тригональную структуру. Угол между межъядерными осями Н—В—Н, называемый валентным углом Н—В—Н, должен составлять 120°. [c.553]

    Электронное строение многоатомных молекул может быть объяснено образованием локализованных молекулярных орбиталей между каждой парой соседних атомов в молекуле. Для объяснения связи между центральным атомом молекулы (например, углерод в СН4) и присоединёнными к нему периферийными атомами (четыре атома водорода в СН4) часто используют гибридные орбитали, из которых затем строят локализованные орбитали. Если к центральному атому присоединены четыре периферийных атома, для образования локализованных связывающих орбиталей используются четыре эквивалентных sp -гибрида (тетраэдрические гибридные орбитали) при наличии трех периферийных атомов центральный атом использует для образования связей с ними три своих эквивалентных sp -гибрида (плоские тригональные гибридные орбитали) при двух периферийных атомах центральный атом использует два эквивалентных sp-ги-брида (линейные гибридные орбитали). Например, каждую связь С—Н в молекуле СН4 можно представить как электронную пару на локализованной связывающей молекулярной орбитали, образованной sp -гибрида-ми атома углерода и ls-орбиталями атомов водорода [схема связи (sp -I-+ Is)]. [c.595]


    По числу неспаренных электронов атом углерода образует четыре связи, атом азота—три, а атом кислорода образует две связи (рис. 46). В молекуле H3N одна из 5р -гибридных орбиталей занята несвязывающей электронной парой, в молекуле Н2О две орбитали заняты несвязывающими электронными парами. Поэтому если молекула СН4 имеет форму тетраэдра, то молекула H3N— форму тригональной пирамиды, а молекула Н2О — угловую форму. [c.68]

    Двойная связь состоит из связей разных типов. Квантово-химические представления говорят о том, что атомы углерода в этилене имеют тригональный или зр - тип гибридизации, т.е. каждый атом углерода для образования связей использует три зквршалентные гибридньк зр - орбитали, образованные комбинацией одной з- и двух р-орбиталей, причем все орбитали, а следовательно, все атомы лежат в одной плоскости под углом 120 т.е. [c.68]

    Амплитуда колебаний атомных ядер во много раз (пропорцжо-нально квадратному корню из отнощения масс) меньше, чем электронов. Поэтому атомные ядра, принадлежащие данной молекуле, вместе со всеми своими электронами, кроме валентных (т. е. атомные остовы), связанные направленными межатомными связями, представляют собой довольно резко локализованный остов молекулы. Понятно, что форма молекулы зависит от строения остова, которое в свою очередь определяется характером межатомных связей, их направлением. Но, как мы знаем, направление межатомных связей задается той или иной комбинацией атомных орбита-лей, т. е. пространственной конфигурацией соответствующих электронных волновых функций, связанной с симметрией поля сил между атомным ядром и электронами, Так, в результате коаксиальной -гибридизации трехатомные молекулы галогенидов элементов И группы в газообразном состоянии имеют остов линейной формы. Четырехатомные молекулы, например ВРз, благодаря 5р2-гибридизации приобретают остов, в котором все соединяющие атомные остовы три связи располагаются в одной плоскости под углом 120° друг к другу. Тетраэдрическое строение остова пятиатомных молекул типа СН4 и ССЦ обусловлено р -гибридизацией к такой же конфигурации остова молекул приводит х -гибриди-зация.. Существуют также октаэдрическая ( р -гибридизация, плоская квадратная 5/7 -гибридизация, тригональная бипирами-дальная ( 5,о -гибридизация, каадратная пирамидальная 5р -гиб-ридизация и др. [c.84]

    Как мы видели, тригонально-пирамидальное строение имеет молекула аммиака НаЫ. Согласно методу валентных связей в ней атом азота находится в состоянии 5р -гибридизации. Из четырех вр -гибридных орбиталей азота три участвуют в образовании трех ст-связей Ы—Н, а четвертую орбиталь занимает несвязывающая электронная пара. В терминах метода молекулярных орбиталей это соответствует заполнению трех связывающих и одной почти несвязывающей молекулярной ст-орбитали  [c.100]

    Сульфит-ион SOI имеет структуру тригональной пирамиды с атомом серы в вершине. Неподеленная электронная пара sp -гибридной орбитали серы пространственно направлена. Поэтому ион S0 — активный донор электронной пары и легко переходит в тетраэдричес- [c.356]

    У производных фосфора (П1) в образовании связей принимают участие три или четыре р -гибридные орбитали атома фосфора, что соответствует пирамидальному и тетраэдрическому расположению связей. Так, молекулы тригалидов фосфора PHal, (как и НзР) по структуре представляют собой тригональную пирамиду с атомом фосфора в вершине (dpHai=l,55—2,55А, Z HalPHal= 100°)  [c.412]

    Интересно отметить, что гибридные 5р с -орбитали по теории валентной связи направлены к вершинам тригональной бипирамиды, и они не являются эквивалентными, как, ианример, 5р -орбитали. И действительно, для этой гибридизации было пoкaзaнo что максимальное перекрывание орбиталей окружающих атомов с экваториальной орбиталью центрального атома происходит на несколько меньшем межъядерном расстоянии, чем с полярной орбиталью. Однако следует еще раз подчеркнуть, что это просто удобное описание, а не объяснение различия в длине между полярной и экваториальной связями. [c.221]

    В качестве примера рассмотрим 5/> -тригональную гибридизацию атома А (л==3). Точечная группа симметрии данной системы — Взц. Находим представление, по которому преобразуются 5/ -гибридные орбитали Г = А1 + Е. Отсюда следует, что тригонально-гибридизованные орбитами должны включать одну из орбиталей представления А илк (1 ) и две орбитали Е -представления (р , Ру, или (1 у). Поэтому возможны четыре различные комбинации орбиталей, об)зазующих три гибридные орбитали, расположенные в плоскости под углом 120° друг к дру-гу spJ)y, dppJ y. 5й у и у. d,2d ..y dxy или dp , sif, [c.178]

    Степень окисления —3. Аммиак молекула ЫНз имеет форму тригональной пирамиды НЫН=107°, ее дипольный момент равен 1,460. Согласно теории валентных связей (ВС) атом азота в ЫНз находится в состоянии 5/ -гибридизации связующими являются три гибридные орбитали, четвертая — несвязующей. Энергетическая диаграмма молекулярных орбиталей ЫНз приведена на рис. 17.9. [c.438]

    Ввиду невыгодности размещения электронов на высоких энергетических уровнях орбиталям eg чаще всего соответствуют разрыхляющие молекулярные орбитали, орбиталям t g — связывающие молекулярные орбитали. Величина расщепления (разность энергий между уровнями g и t2g) обозначается Д. Сохранение средней энергии сферического поля требует, чтобы две орбитали eg повышались каждая на /дД, а три орбитали Ug понижались на 2/5Д. Величина Л зависит от характера координации комплекса (октаэдрическая, тетраэдрическая, тригональная и т, п.) и степени взаимодействия лиганда с af-орбиталямн. Последняя по силе создаваемого поля увеличивается в ряду 1 <Вг-< С1-<0Н-<р-<Н20<ЫНз<Ы02 < < N . Различают слабое и сильное поля лигандов, определяющие различное размещение d-электронов по орбиталям. [c.158]

    В молекулах ЭГз атомы мышьяка и сурьмы для связи с галогеном используют 5/7- -гибридные орбитали, в силу чего эти молекулы имеют форму тригональной пирамиды с углом между связями Г—Э—Г в пределах 93—100 . Вклад 5-состояния в образование связей для сурьмы заметно меньше, вследствие чего угол между связями в галогепидах сурьмы ближе к прямому, т. е, связь образуется в основном за счет р-орбиталей центрального атома. В еще большей мере это характерно для тригалогенидов висмута. Молекулы известных пентагалогенидов имеют форму тригональной бипирамиды, что обусловлено. s ) W-гибpидизaциeй с участием вакантных -орбиталей центрального атома. Это объединяет элементы подгруппы мышьяка с фосфором и отличает их от азота. [c.293]

    Карбонилы получают взаимодействием тонких порошков металлов и газообразного СО при повышенном давлении и при обычной температуре или при нагревании (500—600 К). Ио строению их можно рассматривать как соединения нейтральных атомов с химически активными молекулами СО. Атом железа захватывает 5-элек-троны и образует электронные пары в подуровне освобождая при этом 5 валентных орбиталей, как это показано на рис. 184. Вакантные орбитали, гибридизируясь, получают ориентацию тригональной бипирамиды, по вершинам которой и располагаются молекулы СО, [c.372]

    Карбонилы получают взаимодействием тонких порошков металлов и газообразного СО при повышенном давлении и при обычной температуре или при нагревании (200—300 С). По строению их можно pa мaтpивaтfJ как соединения нейтральных атомов с химически активными молекулами СО. Атом железа захватывает 5-элек-троны и образует электронные пары в подуровне й, освобождая при этом 5 валентных орбиталей, как это показано на рис. 184. Вакантные орбитали, гибридизируясь, получают ориентацию тригональной бипирамиды, по вершинам которой и располагаются молекулы СО, вступая в донорно-акцепторную связь с вакантными орбиталями. Подобная структура молекулы иодтверждена экспериментально. [c.386]

    Поскольку аксиальные атомы ЯЬ в [ЯЬзССО) ] не дают вклад в многоцентровое остовное связывание, расстояние между аксиальными атомами ЯЬ—ЯН в [ЯЬ5(СО),5] должно быть боль-ще по сравнению с расстоянием между аксиальными атомами в тригональных бипирамидах, в которых аксиальные атомы предоставляют 3 внутренние орбитали. Другими словами, тригональные бипирамиды, в которых аксиальные атомы поставляют только 2 внутренние орбитали, должны быть более вытянутыми, чем тригональные бипирамиды, в которых аксиальные атомы предоставляют обычные 3 внутренние орбитали. Коэффициент удлинения Е го-моядерных тригональных бипирамид можно определить на основании длин связей, установленных с помощью рентгеноструктурного анализа, используя уравнение [c.136]

    По мере перехода в этом ряду от линейной к тетраэдрической молекуле число молекулярных (т-орбиталей увеличивается, а число х-орбиталей уменьшается. В тригонально-пирамидальной молекуЛе число сг-орбиталей то же, что и в треугольной, но вместо несвязывающей т-орбитали имеется несвяйывающая <г -орбиталь. [c.75]

    Соединения фосфора (Ш). У производных фосфора (III) в образовании связей принимают участие три или четыре орбитали атома фосфора, что соответствует пирамидальному и тетраэдрическому расположению связей. Так, молекула тригалогени-д а фосфора РНа1з (как и Н3Р представляет) собой тригональную [c.400]


Смотреть страницы где упоминается термин Орбит тригональные: [c.53]    [c.65]    [c.571]    [c.206]    [c.206]    [c.109]    [c.411]    [c.411]    [c.121]    [c.42]    [c.32]    [c.82]    [c.135]    [c.136]    [c.347]   
Органическая химия Том 1 перевод с английского (1966) -- [ c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Орбита

Связывающие орбиты тригональные



© 2024 chem21.info Реклама на сайте