Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бактерии репликация ДНК

    Как видно на фиг. 102, в первые 20 мин после образования дочерних бактерий репликация частично реплицированных кольцевых молекул ДНК завершается. Тем временем синтез нового мембранного материала между точкой прикрепления ДНК и перегородкой, рост которой в предшествующий период генерации разделил родительскую клетку, отодвигает точку прикрепления ДНК к центру дочерней клетки. Два только что завершивших репликацию кольца теперь приобретают отдельные точки прикрепления (а следовательно, и отдельные репликационные Y-вилки), расположенные на ограниченных зонах роста клеточной мембраны. По истечении следующих 15 мин период генерации бактерии приближается к своему концу. Обе кольцевые ДНК-реплики уже частично реплицировались, а их точки прикрепления отошли друг от друга в результате роста нового мембранного материала между ними. Тем временем уже началось образование перегородки между точками прикрепления. Наконец, по истечении 40-минутного периода генерации бактерия делится, давая начало двум дочерним клеткам, каждая из которых получает частично реплицированную кольцевую молекулу ДНК. [c.207]


    З-Ю п. н. Оказывается, у всех организмов точность работы репликативной машины (включающей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]

    По крайней мере у бактерий топоизомеразы играют важную роль не только в ходе репликации и на завершающих стадиях этого процесса, но и при инициации раунда репликации. [c.60]

    Начавшийся процесс репликации хромосомы бактерии продолжается до тех пор, пока не удвоится вся ДНК. В этом смысле бактериальная хромосома представляет собой единицу репликации — репликон. Другие молекулы ДНК, которые могут присутствовать в бактериальных клетках (см. гл. V), также представляют собой отдельные репликоны. [c.60]

    Стабильное поддержание любого репликона требует не только согласования его репликации с клеточным делением, но и упорядоченного распределения молекул ДНК по дочерним клеткам. Считается, что правильная сегрегация достигается у бактерий за счет прикрепления ДНК к мембране, причем пространственная организация [c.68]

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]


    Бактерии часто переваривают и разрушают ДНК вторгшихся в них вирусов или ДНК, попавшую в клетку при спаривании с бактерией несовместимого штамма. В результате исследований этого интересного явления, получившего название рестрикция, было обнаружено, что ДНК вирусов, способных к репликации лишь в определенных клетках-хозяевах, в специфических местах каким-то образом маркирована. Причем во многих случаях метками являются метильные группы. Оказалось, что соответствующим образом метилированная ДНК не расщепляется бактерией, тогда как неметилированная ДНК расщепляется высокоспецифичной эндонуклеазой именно в тех местах, в которых обычно происходит метилирование. У каждого вида бактерий (а часто даже и у отдельных штаммов в пределах данного вида) имеются свои собственные рестриктирующие ферменты. Рестриктирующие ферменты обладают очень высокой степенью специфичности и часто разрезают ДНК всего лишь в нескольких точках (или рядом с ними), для которых характерна уникальная последовательность оснований. В настоящее время удалось выделить около 45 таких ферментов с разной специфичностью. [c.279]

    Помимо ряда общих ф-ций, свойственных очень многим П (таких, как автономная репликация или ф ция переноса), существует множество спец ф-ций, детерминируемых той или иной П У бактерий наиб изучены три главные группы плазмид Р-П (факторы фертильности) ответственны за половой процесс, К-П (факторы резистентности) обеспечивают устойчивость бактериальных клеток к действию антибиотиков (напр, к стрептомицину и тетрациклину) и сульфаниламидным препаратам, в Со1-П (колициногенных факторах) локализованы гены синтеза колицинов (бактерио-цинов)-токсичных белков, к-рые не действуют на производящую их клетку, но убивают др бактерии [c.553]

    Нормальное размножение клеток требует высокой точности копирования ДНК-матрицы. Генетический материал живых организмов имеет огромные размеры. Даже у бактерий ДНК-полимераза должна практически безошибочно скопировать молекулу ДНК длиной около 3-10 п. н. Оказывается, у всех организмов точность работы репликативной машины (включаюш.ей не только ДНК-полимеразы, но и другие белки см. ниже) как раз такова, чтобы обеспечить безошибочное воспроизведение всего генома или допустить лишь малое число ошибок. Так, у бактерий ошибки синтеза ДНК происходят не чаще чем один раз на много миллионов нуклеотидов. Молекулярные взаимодействия, на которых основаны ферментативные реакции, в частности синтез ДНК, не могут быть абсолютно надежными, кроме того, точность процесса связана с его скоростью. Для того чтобы обеспечить высокую точность наряду с высокой скоростью репликации, природе пришлось прибегнуть к специальным механизмам, один из которых — механизм коррекции. [c.47]

    Репликация лучше всего изучена у Е. соИ. У этого организма есть три ДНК-полимеразы (I, П и HI). Все три фермента и их аналоги из других бактерий обладают корректирующей экзонуклеазной активностью. [c.48]

    Детальную картину репликации ДНК лучше всего рассмотреть на примере . o/i. Описанные в настоящем разделе механизмы репликации справедливы по крайней мере для других бактерий. [c.54]

    У бактерий репликация ДНК начинается в особой точке молекулы, которая называется точкой начала (или сайтом иниципции) репли- [c.33]

    ДНК-полимераза существует в различных формах в зависимости от выполняемых ею функций. Хотя это кажется невероятным, разнообразие форм ДНК-полимеразы обусловлено не субъ-единичной структурой, по крайней мере в бактериальных ферментах. Были охарактеризованы три различные формы фермента из бактерии Е. oli, которые обозначили как полимераза I, И и III. ДНК-полимераза I выполняет в основном репарирующие функции, тогда как ДНК-полимераза П1 является ферментом репликации. Функции ДНК-полимеразы II еще не ясны. Ферменты млекопитающих также существуют во множественных формах. [c.150]

    При высокой скорости роста бак териЛ инициация нового раунда репликации происходит еще до окончания предыдущего. Такая дихотомическая репликация позволяет бактериям при благоприятных условиях и исть время генерации меиьшее. чем время, необходимое на завершение полного раунда репликации ДНК) [c.67]

    Системы репликации и репарации ДНК хоть и очень редко, но все же ошибаются. В результате в ДНК может включиться неправильный , т.е, не комплементарный матрице, нуклеотид. Другой источник неспаренных нуклеотидов — гомологичная рекомбинация, в ходе которой образуются гетеродуплексы, состоящие из двух комплементарных цепей, исходно принадлежавших разным молекулам ДНК (см. гл. IV), Такие нарушения структуры ДНК репари-р ются, по крайней. мере у бактерий и низших эукариот. Система репарации должна каки.м-то образом отличать друг от друга две цепи одной. молекулы ДНК, чтобы решить, какой из двух неспарен-ных нуклеотидов правильный , и за.менить неправильный нуклеотид на нуклеотид, ко.мплеиентарный правильному . [c.81]

    Общая, или гомологичная, рекомбинация характерна для всех живых организмов от вирусов и бактерий до многоклеточных эукариот. При гомологичной рекомбинации происходит обмен участками между гомологичными, т. е. очень похожими по последовательности, лтолекулами ДНК- Так, к сбщей рекомбинации относятся обмены между гомологичными хромосомами в мейозе у эукариот и рекомбинационная инициация репликации ДНК бактериофага Т4 (см. гл. ХП1). В первом приближении можно сказать, что гомологичная рекомбинация не создает принципиально новых последовательностей, а перетасовывает уже имевшиеся сходные варианты одной и той же последовательности (рис. 51). Чтобы подчеркнуть важность этого свойства, достаточно сказать, что при гомологичной рекомбинации между двумя сходными генами, кодирующими белок, оба рекомбинантных продукта оказываются не нарушенными, не происходит, например, сдвига рамки считывания, Другими словами, при гомологичной рекомбинации каким-то образом обеспечивается взаимное узнавание одинаковых (или очень сходных по последовательности) участков рекомбинирующих. молекул. Если же го.чологии нет, то и рекомбинация такого рода происходить не будет. [c.84]


    Кроме хромосомы у большинства видов бактерий существуют другие способные к автономной репликации структуры — плазмиды. Это дву цепочечные кольцевые ДНК размером от 5 до 0,1 % размера хромосомы, несущие гены, не обязательные для клетки-хозяина, или гены, необходимые лишь в определенной среде. Например,, плазмиды (R-факторы) многих клинических шта.м.мов несут устойчивость к антибиотикам, как правило, сразу к нескольким. Другие плазмиды определяют болезнетворность патогенных бактерий, например патогенных штаммов Е. oli, возбудителей чумы и статб-няка. Третьи — определяют способность почвенных бактерий ис пользовать необычные источники углерода, скажем нафталин. [c.110]

    Ммекулярный механизм транспозиции может быть различным у разных мобильных элементов, поэто.му лучше всего рассмотреть его на конкретных примерах. Достаточно изучен в этом отношении бактериофаг Ми, являющийся, по сути дела, необычным транспозо-ном. Этот умеренный бактериофаг встраивается в произвольный, участок хро.чосомы бактерии-хозяина. Если происходит индукция профага и начинается его вегетативное развитие, то он размножается, не вырезаясь из хромосомы, за счет повторных актов репликативной транспозиции. Вырезание фаговой ДНК из бактериальной происходит лишь при упаковке в фаговые частицы, когда репликация уже прошла. При репликации фага Л и транспозиция происходит с очень высокой частотой, поэтому именно эта система изучена лучше других. [c.115]

    Выше упоминалось, что мобильные элементы вызывают генетическую нестабильность поблизости от участка своей локализации. Эта особенность легко объясняется уже известными нам свойствами IS-элементов и транспозонов бактерий, На рис. 80 показано, что получится при перемещении в пределах одного репликона транспозона типа ТпЗ, т.е. с репликативным механизмом транспозиции. В зависимости от того, как внесены разрывы в ДНК-мишень, получится либо делеция, либо инверсия генетического материала между местом расположения транспозона и мишенью его перемещения. По-сути дела, образование делеции напоминает процесс распада коинтеграта, но поскольку одна из образовавшихся молекул ДНК не имеет ориджина репликации, она утрачивается. Если происходит инверсия, то на обеих ее границах оказывается по копии транспозона в инвертированной друг относительно друга ориентации. Таким образом, образование делеций и инверсий характерно для репликативг ного механизма транспозиций. [c.120]

    Системы рестрикции II типа обнаружены у очень многих бактерий. Эти системы состоят из двух отдельных ферментов, рестриктазы н метилазы, узнающих одну и ту же последовательность ДНК — сайт рестрикции. Если сайт рестрикции не метилирован, то рестриктаза вносит в него двуцепочечный разрыв. ДНК не подвергается рестрикции, если хотя бы одна цепь метилирована. Такие свойства предохраняют собственную ДНК бактерий от рестрикции собственная ДНК либо полностью метилирована по всем сайтам рестрикции, либо, после репликации, патуметилирована. На полуметилированные сайты рестрикции действует метилаза и метилирует их полностью. Как и прочие клеточные метилазы, метилазы системы рестрикции-модификации в качестве донора метильных групп нс-патьзуют 5-аденозилметионин. В табл. 7 для примера приведены данные о некоторых рестриктазах и метилазах II типа. [c.130]

    Предполагается, что мозаичная экзон-интронная структура генов, свойственная эукариотам, вероятно, была более древней, чем безынтронная, прокариотическая. В таком случае традиционные филогенетические представления, согласно которым прокариот помещают в основание эволюционного древа, а эукариот — на вершины, должны быть пересмотрены. Геном прокариот, как правило, не содержащий генов с интронами, рассматривается как компактный (рационализированный), образовавшийся в результате потери интронов, например, в результате отбора на скорость репликации. Напротив, предполагается, что мозаичная структура генов определяет эволюционные возможности генома, тогда как прокариоты, утерявшие интроны, представляют собой эволюционный тупик. Заметим, однако, что интроны, удаляемые в результате сплайсинга, изредка обнаруживаются при экспрессии генов в клетках бактерий, например в гене тимидилатсинтетазы фага Т4. [c.194]

    О получении первых экспериментальных данных, четко указывающих На полуконсервативный способ репликации, сообщили в 1958 г. Месел-сон и Сталь [24]. Клетки Е. oli выращивались на среде, единственным Источником азота в которой были ионы NHt. ДНК бактерий, появившихся через несколько последовательных делений исходных клеток в Данной среде, содержала только стабильный изотоп N. Такие бактерии быстро переносили в среду, содержащую NHt. Клетки оставляли в сре-Де на время, необходимое, чтобы их количество увеличилось вдвое, вчетверо и т. д. На разных стадиях выделяли ДНК и центрифугировали в Градиенте плотности хлористого цезия. Небольшие, но легко определяемые различия плотностей позволяли разделять двухцепочечные молекулы ДНК иа три фракции молекуды, содержащие только N молекулы, [c.195]

    Изменения в структуре ДНК встречаются очень редко. Так, например, в среднем ген может удвоиться 10 раз, прежде чем произойдет заметная мутация [128а]. Тем не менее, работая с бактериями нли бактериофагами, мы можем обследовать чрезвычайно большое число особей в поисках мутаций. Если, например, посеять один миллион вирусных частиц на чашку с агаром в условиях, позволяющих распознать мутацию определенного гена, то в среднем мы можем надеяться обнаружить один мутант. Наиболее часто встречаются мутации, обусловленные заменами пар оснований (точковые мутации). Оии происходят в результате включения неправильного основания при репликации или репарации ДНК. При таких мутациях одно основание в триплете кодона замещается другим. В результате возникает другой кодон, что приводит к замене в соответствующем белке одной аминокислоты на другую . Замену одного пиримидина на другой С—)-Т или Т—)-С) или одного пурина на другой пурин иногда называют транзицией, тогда как замену пурина на пиримидин или, [c.246]

    Как можно ответить на вопрос о том, локализованы ли мутации в одном и том же гене, в близко расположенных генах или же в генах, отстоящих друг от друга на некотором расстоянии Ответ на этот вопрос можно получить с помощью теста на комплементацию. Если два мутантных бактериофага несут мутации в разных генах, то при заражении бактерии обоими мутантными фагами одновременно часто оказывается, что бактериофаги могут размножаться в бактерии-хозяине. Поскольку в этйм случае у каждого фага есть неповрежденный ген для Одного из двух затронутых белков, все генетические функции в этом случае выполняются. Если же у обоих мутантных фагов поврежден Один и тот же ген, то такие фаги не смогут дополнять функции друг Друга при совместном заражении. Такой эксперимент часто называют Чис-гранс-сравнением. Одновременное заражение двумя различными мутантами — это транс-тест. В качестве же контроля используют цис-тест бактерию заражают одновременно рекомбинантом, несущим обе мутации в одной и той же ДНК, и стандартным фагом. В этом случае репликация должна протекать нормально. [c.250]

    Когда ДНК бактериофага проникает в бактериальную клетку, она обычно практически мгновенно начинает контролировать работу метаболического аппарата клетки и направляет его полностью на образование новых вирусных частиц. В результате приблизительно через 20 мин образуется 100—200 новых вирусных частиц, что приводит к лизису клетки и ее гибели. Принципиально отлично от этого ведут себя умеренные фаги. Проникнув в клетку, ДНК умеренного фага может репрессироваться и интегрироваться с бактериальным геномом точно так же, как фактор Р (рис. 15-2). При этом он переходит в состояние профага и вступает в гак называемую лизогенную фазу развития репрессированная ДНК фага реплицируется как часть генома бактерии, не причиняя эреда летке до тех пор, пока какой-нибудь фактор не снимет репрессию и не активирует интегрированный генетический материал. После этого происходят репликация фага и л нэис бактерии. Умеренные [c.258]

    Продукт гена N делает возможной также и правостороннюю транс-, крипцию через гены О, и Q и далее уже с меньшей скоростью вдод ь остальной хромосомы до точки а. Гены О и детерминируют синтез белков, позволяющих репликационной системе бактерии-хозяина начать образование новых молекул фаговой ДНК. Репликация начинается в точке ori и протекает в обоих направлениях, как это описано в разд. Д. Ген Q детерминирует синтез белка, который значительно ускоряет транскрипцию поздних генов, начиная с промотера Pr. [c.261]

    Если в быстро растущей бактерии синтез ДНК происходит. практически непрерывно, то в эукариотических клетках репликация занимает значительно более ограничениую часть клеточного цнйсла [1-67].  [c.263]

    Один из методов, использованных для выяснения направления репликации у . oli, состоял в следующем. В хромосому бактерии в сайте att (рис. 15-1) встраивали профаг X, а во многие другие сайты, локализованные вдоль хромосомы, встраивали ДНК фага Ми-1 [189]. Особенно удобно использовать в этом случае фаг Ми-1, поскольку его включение может происходить во многих сайтах, локализованных в пределах хорошо картированных генов. Включение в пределах какого-то гена инактивирует этот ген (мутация добавки), что позволяет точно определить место локализации профага Ми-1. Удалось получить целую серию штаммов бактерий, содержащих как профаги X, так и фаг Ми-1, причем последний был локализован в различных участках хромосомы. Эти бактерии были, кроме того, ауксотрофны по определенным аминокислотам. Благодаря этому репликацию можно было останавливать. [c.272]

    Пытаясь найти по возможности более простые системы для изучения синтеза ДНК, многие исследователи обратились к мелким ДНК-содержащим вирусам типа ФХ174 и М13. Они не обошли при этом вниманием бактериофаги, снабженные отростками фаги Я, Т7 и Т4, а также плазмиду колицина Е-1. Преимущество этих систем состоит в том, что для них легче смоделировать репликацию ДНК в клеточных экстрактах, а кроме того, ДНК вирусов и плазмид хорошо изучены с генетической точки зрения. Во многих случаях репликация зависит как от генов вируса, так и от генов клетки-хозяина. Так, например, мутации генов dnaB, D, Е, F и О приводят к потере способности поддерживать рост фага X точно так же, как и в случае, когда инактивированы /s-гены. Вместе с тем фаг X сохраняет способность к репликации в бактериях с мутантными генами А я С. Многие вирусы, в том числе Т-четные фаги, содержат гены, кодирующие синтез своих собственных специфических ДНК-полимераз и других белков, необходимых для репликации. [c.276]

    В организме М. под действием ферментов восетаназлп-ваются, превращаясь в бифункцион. алкилирующие соединения. В этой форме М. образуют сшивки в цепях ДНК, препятствующие расхождению нитей ДНК при репликации. Это приводит к деградации ДНК, мутациям и фрагментации хромосом бактерий и клеток млекопитающих. [c.94]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Среди П, обеспечивающих устойчивость бактерий к антибиотикам, осн массу составляют т наз факторы множеств резистентности, несущие сразу неск соответствующих детерминант С помощью трансмиссибетьных П детерминанты резистентности легко могут распространяться между видами, способными к конъюгации На такие П гены резистентности могут передаваться с помощью транспозонов Кроме детерминант лек резистентности из числа функцион элементов П хорошо изучены гены нек-рых бактериальных токсинов, напр энтеротоксинов, вырабатываемых возбудителями кишечных инфекций, носителями т наз Тох-П (факторов патогенности энтеробактерий) Показана способность Тох-П передаваться между бактериями в организме животных и человека На этих П могут находиться также детерминанты резистентности к антибиотикам В этой связи активно развивается новое направление в практич бактериологии-поиск и создание в-в, избирательно подавляющих репликацию плазмид или экспрессию их генов Пример таких в-в-клавулановая к-та (ф-ла I) и ее производные - ингибиторы Р-лактамазы [c.553]

    Клеточная мембрана — это не просто мешок. Она регулирует перенос низкомолекулярных веществ в клетку и из клетки. У бактерий с внутренней поверхностью мембраны связаны ферменты, катализирующие процессы окисления. Нередко бактериальные мембраны образуют складчатые участки, имеющие в разрезе вид многослойных структур это так называемые мезосомы (рис. 1-1 и 1-2, Г). Предполагается, что в мезосомах протекают специализированные процессы обмена веществ и репликация ДНК. В клетках Е. oli мезосомы выявляются не всегда, и все же, видимо, репликация ДНК у этого организма происходит на определенных участках поверхности мембраны и регулируется связанными с мембраной ферментами. Образование новой мембраны (перегородки) между делящимися клетками происходит синхронно с синтезом ДНК. [c.21]

    М. Мезельсон и Ф. Сталь в 1958 г. показали, что репликация происходит по полуконсервативному механизму, т.е. одна цепь синтезируется заново, а вторая сохраняется в исходном виде, и дочерние клетки первого поколения получают одну цепь ДНК от родителей, а вторая цепь является новой. Опыты Мезельсона и Сталя состояли в том, что бактерии долгое время выращивали в среде, содержащей тяжелый изотоп азота Н, который включался в ДНК, а затем переносили клетки в условия, содержащие обычный (легкий) изотоп азота Ы. После репликации дочернюю ДНК фракционировали по плотности. Оказалось, что вся дочерняя ДНК однородна и имеет плотность, промежуточную между плотностью тяжелой и легкой ДНК, т.е. оба изотопа распределились в соотношении 50 50. Это означало, что одна цепь дочерней молекулы ДНК содержала а другая - "Н, что и соответствует полуконсервативной репликации. Такой же процесс повторяется при образовании второго поколения клеток, в результате только две из четырех до- [c.54]

    В клетках эукариотических организмов обнаружены четыре ДНК-полимеразы а, р, V и 6. ДН К-полимераза а считается основным ферментом ядерной репликации. Содержание этого фермента заметно возрастает во время S-фазы клеточного цикла, когда происходит активный синтез ДНК- Только эта ДНК-полимераза подавляется афидиколином — ингибитором синтеза ДНК эукариот. Фермент состоит из нескольких субъединиц разного размера. Например, у дрозофилы молекулярные массы субъединиц составляют 148, 58, 46 и 42 кД. Полимеразная активность присуща самой большой из субъединиц. Молекулярная масса нативной эукариотической ДНК-полимеразы а составляет около 500 кД. Так же как в случае ДНК-полимеразы IИ . o/ , эффективность и высокая процессивность работы полимеразы а зависят до дополнительных субъединиц, которые сами по себе полимеризующей активностью не обладают. Одна из субъединиц ДНК-полимеразы а оказалась ДНК-праймазой — ферментом, необходимым для инициации новых цепей ДНК (см. ниже) ассоциация с праймазой не характерна для ДНК-полимераз бактерий. [c.50]


Смотреть страницы где упоминается термин Бактерии репликация ДНК: [c.50]    [c.68]    [c.125]    [c.196]    [c.257]    [c.272]    [c.277]    [c.518]    [c.468]    [c.251]    [c.251]    [c.252]    [c.41]   
Молекулярная биология клетки Том5 (1987) -- [ c.40 ]




ПОИСК







© 2025 chem21.info Реклама на сайте