Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нервные сенсорные

    До комплексного эргономического изучения ЧМС не было известно, что инфракрасное излучение затрудняет передачу нервных возбуждений. Длительное воздействие большой скорости воздуха на человека (более 5 м/с) угнетает его нервную систему. Вибрация ускоряет утомление, снижает точность, быстроту двигательных актов, ухудшает внимание и характеристики оперативной памяти. Недостаток кислорода нарушает зрение, понижает слуховую чувствительность. Ограниченная подвижность замедляет сенсорные и психические процессы, ухудшает простую сенсомоторную реакцию и т. д. [c.149]


    Представьте себе, что нервный рецептор в коже или в каком-либо другом из органов чувств воспринимает сигнал. Этот сигнал проходит по сенсорному нейрону (афферентное волокно) вверх к головному мозгу. Пройдя два или более синапса (обычно один в спинном мозге и один в таламусе), сигнал в конце концов попадает в определенную сенсорную область коры больших полушарий. Отсюда в модифицированной форме он распространяется через вставочные нейроны практически по всей коре мозга. Как в синапсах, так и в коре распространение сигнала [c.329]

    Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы. [c.329]

    Большое число микротрубочек содержится в длинных аксонах нервных клеток. Здесь они, вероятно, обеспечивают быстрый перенос белков и других веществ из тела клетки в аксон Микротрубочки, функция которых неизвестна, обнаружены и во многих сенсорных клетках. Недавно было показано, что микротрубочки содержатся в цитоплазме самых разных клеток. Иопользуя непрямой метод флуоресцирующих антител, Вебер и др. получили приведенную ниже [c.276]

    ОТ СОМЫ. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Нейрон может иметь множество дендритов, но только один аксон, который, однако, способен ветвиться, образуя коллатерали. Нервные волокна несут две функции они либо проводят импульс от сенсорного рецептора к центральной нервной системе, либо от центральной нервной системы к органу-мишени. Волокна первого типа назы- [c.25]

    ТЭА действуют подобным же образом. Интересно, что инъекция каталитической субъединицы сАМР-зависимой протеинкиназы в сенсорный нейрон стимулировала расслабление, а инъекция ингибитора протеинкиназы снимала это действие. Кандел и сотр. показали, что серотонин, а также вводимая протеинкиназа вызывают благодаря снижению калиевой проводимости значительное пролонгирование потенциалов действия и это в свою очередь ведет к более длительной деполяризации нервного окончания и увеличению входящего Са2+-тока. Более высокая концентрация Са + в нервном окончании вызывает более интенсивное высвобождение медиатора, т. е. более эффективную [c.347]


    На каждой стороне тела клетки выходят из нервного гребня по двум главным путям один из них пролегает непосредственно под эктодермой, а другой ведет в глубь тела через сомиты (рис. 15-74). Из клеток, мигрирующих под самой эктодермой, образуются пигментные клетки кожи, а нз тех, что избрали более глубинный путь,-различные нервные ткани и пигментные клетки внутренних органов. Место назначения клетки определяется ее положением на продольной оси тела это было ясно продемонстрировано для клеток нервного гребня, движущихся глубинными путями и образующих периферические нейроны вегетативной нервной системы. Эти нейроны объединяются в ганглии, например сенсорные ганглии, ресничный ганглий около глаза, це- [c.123]

    Вкусовые почки служат одним из наиболее выразительных примеров состояния дифференцировки, зависящего от постоянного взаимодействия между клетками. Эти крохотные структуры, с помощью которых мы ощущаем сладкое, кислое, соленое и горькое, образуются главным образом в эпителии верхней стороны языка. Каждая почка состоит приблизительно из 50 клеток, которые по форме легко отличить от окружающих эпителиальных клеток (рис. 164). Удлиненные клетки вкусовой почки, расположенные наподобие дощечек в бочонке, проходят через всю толщу эпителия, образуя маленькое отверстие (вкусовую пору), выходящее наружу. Как полагают, именно через эту пору должны проникать внутрь молекулы вещества, вызывающего вкусовое ощущение. Во вкусовой почке можно различить клетки двух типов-бледные и темные. Эти клетки неизвестным пока образом действуют как вкусовые рецепторы. Сенсорные импульсы передаются в мозг по нервным волокнам, пронизывающим вкусовую почку и оканчивающимся на ее клетках. Если нерв перерезать, вкусовые почки полностью исчезают. Регенерация нервных волокон приводит к тому, что дифференцированное состояние эпителиальных клеток изменяется и из них формируются новые вкусовые почки. Можно индуцировать образование вкусовых почек даже на таком участке эпителия, где их [c.135]

    Нервные клетки, или нейроны, принимают, проводят и передают электрические сигналы. Значение этих сигналов различно и зависит от того, какую роль играет данная клетка в функционировании нервной системы в целом (рис. 18-1). В мотонейронах (двигательных нейронах) сигналы служат командами для сокращения определенных мышц. В сенсорных (чувствительных) нейронах сигналы передают информацию о раздражителях определенного типа, таких как свет, механическая сила или химическое вещество, воздействующих на тот или иной участок тела. Сигналы интернейронов (вставочных нейронов) представляют собой результаты совместной переработки сенсорной информации из нескольких различных источников, приводящей к формированию адекватных двигательных команд. Но, несмотря на различные значения [c.71]

    Нервная система регулирует поведение в соответствии с внешними обстоятельствами и координирует активность внутренних органов. Чтобы осуществлять эти функции, нервная система должна получать сенсорную информацию и реагировать на нее сигналами, контролирующими сокращение мыши [c.118]

    Через преобразователи в нервную систему поступает огромный поток сенсорной информации. Мозг должен переработать эту информацию и извлечь из нее существенные элементы он должен выделить слова из шумового фона, узнать лицо среди разного рода светлых и темных пятен и т.п. Это второй, нейронный, этап переработки сенсорной информации, он требует более тонких и сложных операций, чем переработка на уровне преобразователей. [c.119]

    Сенсорное нервное волокно [c.120]

    Состояние внешнего мира представлено в нервной системе потенциалами в упорядоченных клеточных подсистемах, различных для разных аспектов внешнего мира, воспринимаемых преобразователями разного типа. В пределах данной модальности, такой как зрение, первичное отображение осуществляется в самих рецепторных клетках. Потенциал каждого фоторецептора отражает яркость определенной точки видимой картины. Информация от фоторецептора передается через последовательные группы нейронов и перерабатывается на каждом этапе, пока не достигнет высших мозговых центров, где комбинируется с информацией, приходящей от других сенсорных систем, и используется для выработки выходных сигналов, управляющих поведением. [c.125]

    У человека различают двенадцать систем органов покровная, опорная (скелетная), мышечная, кровеносная, дыхательная, пищеварительная, выделительная, нервная, сенсорная (от лат sensorius [c.119]

    В 1876 г. Бёлль открыл, что розовый цвет сетчатки лягушки блекнет на ярком свету. Это выцветание так называемого зрительного пурпура ясно демонстрирует наличие фотохимической реакции в зрении. Последующие исследования показали обратимость выцветания, если сетчатка находится in situ. В растворах зрительного родопсина, экстрагированного из сетчатки, начальное фотовыцветание сохраняется, но становится необратимым. В настоящее время признано, что выцветание — слишком медленный процесс, чтобы отвечать за сенсорный зрительный отклик. Оно является конечным результатом последовательности реакций, принимающих участие в нервном возбуждении, Теперь мы обратимся к рассмотрению природы зрительного пигмента и его фотохимии. [c.237]


    Выяснив электрические свойства клетки в состоянии покоя, рассмотрим процессы, связанные с возбуждением мембраны. Состояние возбуждения можно определить как временное отклонение мембранного потенциала от потенциала покоя, вызванное внешним стимулом. Этот электрический или химический стимул возбуждает мембрану, изменяя ее ионную проводимость, т. е. сопротивление в контуре снижается (рис. 5.4). Возбуждение распространяется от стимулированного участка к близлежащим областям мембраны, в которых наблюдается изменение проводимости, а следовательно, и потенциала. Такое распространение (генерация) возбуждения называется импульсом. Различаются два типа импульсов потенциал действия, когда сигнал распространяется неизмененным от участка возбуждения к нервному окончанию, и локальный потенциал,. быстро уменьшающийся по мере удаления от участка возбуждения. Локальные потенциалы обнаружены в синапсах воз-буждающие постсинаптические потенциалы (е. р. з. р.) и ингибиторные постсинаптические потенциалы ( . р.з.р.)) и в сенсорных нервных окончаниях рецепторные или генераторные потенциалы). Локальные потенциалы могут суммироваться, т. е. они могут увеличиваться при последующих возбуждениях, тогда как потенциалы действия не обладают такой способностью-и возникают по принципу все или ничего . [c.115]

    В настоящее время термин рецептор применяется в двух различных значениях. Во-первых, этим термином обозначают первичные приемники сенсорных стимулов — света, осязания, температуры и боли. В этом смысле рецептор представляет собой орган, состоящий из одной или более клеток палочки и колбочки ретины (сетчатки) являются, например, фоторецепторами. Во-вторых, термин рецептор описывает на молекулярном уровне связывающий центр для низкомолекулярного активного соединения. Такое определение опять-таки не вполне точно многие исследователи считают рецептором любой центр, который специфично связывает лиганд независимо от их эндогенного или экзогенного происхождения. Нейрохимики же имеют в виду исключительно центры — мишени эндогенных эффекторов типа гормонов, простагландинов и нейромедиаторов. Согласно такому толкованию, термин рецептор не охватывает участки связывания нейротоксинов в аксональных ионных каналах или на ганглиозидах нервной мембраны он относится в основном к пре- и постсинаптическим рецепторам, которые всегда являются белками, связывающими пресинаптически высвобождающийся медиатор и тем самым обеспечивающими первую стадию химического возбуждения мембраны. Данное определение не исключает того факта, что такие рецепторы, как опиатный, обнаружены и охарактеризованы с помощью экзогенных лекарственных препаратов, и это особенно справедливо в тех случаях когда эндогенный медиатор еще неизвестен. [c.241]

    Наиболее изученный трофический фактор — фактор роста нерва (NGF), открытый Леви-Монталсини и Гамбургером в 1950 г, [5]. Этот фактор стимулирует рост периферических сенсорных н симпатических нейронов и необходим для выживания зрелого синаптического нейрона. NGF стимулирует также разветвления образований аксонального типа эмбриональных клеток ганглия в культуре (рис. 11.3,6). Этот эффект используется для его биологического тестирования и выделения. NGF найден во многих нервных и иных тканях, но не в крови. [c.325]

    Фактор роста нерва также стимулирует поглощение уридина, образование полисом, синтез белков, липидов, РНК и потребление глюкозы. Благодаря этому он способствует росту и выживанию симпатических и сенсорных нейронов. NGF активирует рост аксонов и дендритов, осуществляя контроль за сборкой микротрубочек. Если антитела против NGF вводятся мыши, ее симпатическая нервная система дегенерирует. Роль NGF как трофического фактора можно проиллюстрировать на примере его способности индуцировать тирозингидроксилазу — ключевой фермент синтеза катехоламинов. [c.327]

    Маловероятно, что NGF — это единственный белок с такой функцией. Действительно, имеются многочисленные доказательства существования и других трофических факторов [6]. Сенсорные нервные волокна, например, встраиваются в ткани мишени in vitro, даже когда весь NGF удален с помощью антител к этому белку. Далее из мозга свиньи был выделен белок с [c.327]

    Как указывалось ранее, аксон может преодолеть большое расстояние до своей мишени, минуя бесчисленные клетки-мишени, на которые он не реагирует. Имеются два предположения, касающиеся направленного роста, которые, опять же, не исключают друг друга либо аксон ведут микрофиламенты (но неясно, как они прокладывают такой специфичный маршрут), либо, согласно Сперри, он растет против химического градиента, создаваемого мишенью, который и есть тот специфический сигнал, сравнимый, возможно, с сигналом хемотаксиса. В любом случае аксон находит и распознает свою мишень. По селективности данный процесс аналогичен взаимодействию рецептора и лиганда или антигена и антитела однако это взаимодействие непостоянно. На пленках клеточных культур показано, что растущие нейриты находятся в постоянном движении, вырастая и снова втягиваясь, как бы проверяя и зондируя поверхность клетки-мишени перед тем, как образовать постоянный контакт. Специфичность взаимодействия также неабсолютна если клетки-мишени повреждаются, синапсы могут образоваться с клетками других типов. Вот, что обнаруживалось в экспериментах с мозжечком афферентные волокна мозжечка обычно образуют синапсы с дендритами гранулярных клеток при селективном повреждении последних они образуют функциональные синапсы с отростками клеток Пуркинье (см. также гл. 12). Генетически детерминированная химическая специфичность синапсов (жесткость), таким образом, неабсолютно выполняемое свойство оно реализуется достаточно гибко (в этом случае говорят о синаптической пластичности), что предполагает существование механизмов переориентации, возмущающих генетический пробел. При этом существенную роль играет активность или строение синапса. Важная роль сенсорного ввода при создании функциональной нервной системы была продемонстрирована выдающимися экспериментами Хубеля и Визеля на оптической системе кошки. [c.331]

    Из того, что уже было сказано, следует, что обучаемость — общее свойство нервной системы, а сложные формы обучения присущи только центральной нервной системе. В мозге высших организмов нет, однако, специальной области, где запасается информация, т. е. нет органа памяти в узком смысле слова.. По-видимому, специализированная информация (зрительная, акустическая, сенсорная, двигательная и т. д.) хранится в областях коры головного мозга, обусловливающих соответствующие функции. В то же время вполне вероятно, что память-должна включать кооперативное взаимодействие относительно больших областей коры и других участков мозга. Эта концепция в тридцатых годах подтверждена работами Лашли, он установил, что потеря памяти при операциях на коре головного мозга примерно пропорциональна количеству удаляемой ткани, но не зависит от участка операции. В то же время имеются многочисленные клинические наблюдения, которые показывают, что вслед за повреждением части коры головного мозга в результате несчастного случая, опухоли и т. д. другая часть мозга может после определенной тренировки принять на себя функции поврежденного участка реабилитация). Таким образом, если память и ограничена определенными участками коры мозга, то эта локализация пластична. [c.337]

Рис. 15-74. Главные пути миграции клеток нервного гребня у куриного эмбриона (схематический поперечный разрез средней части тела). Из клеток, передвигающихся непосредственно под эктодермой (поверхностным путем), образуются пигментные клетки кожи клетки, движущиеся по глубинному пути ч )ез сомиты, дают начало сенсорным и симпатическим ганглиям, и частично надпочечни-, кам. На этом уровне клетки нервного гребня не участвуют в образовании парасимпатических ганглиев. Рис. 15-74. <a href="/info/1062426">Главные пути</a> миграции клеток нервного гребня у <a href="/info/1375764">куриного эмбриона</a> (схематический <a href="/info/221508">поперечный разрез</a> <a href="/info/916048">средней части</a> тела). Из клеток, передвигающихся непосредственно под эктодермой (<a href="/info/94513">поверхностным путем</a>), образуются пигментные <a href="/info/1375767">клетки кожи клетки</a>, движущиеся по глубинному пути ч )ез сомиты, дают начало сенсорным и <a href="/info/265776">симпатическим ганглиям</a>, и частично надпочечни-, кам. На этом уровне <a href="/info/103255">клетки нервного</a> гребня не участвуют в образовании парасимпатических ганглиев.
    Рыхлая соеаинительная ткань дермы (фибробласты, макрофаги, лимфоци другие лейкоцитьИ Сенсорный нерв, оканчивающийся в осязательном рецепторе (аксоны нервных клеток, шванновские клетки) [c.132]

    В. Одновременно стенка глазного пузырька, обращенная к эпидермису, вдавливается кзади, и прырек приобретает форму бокала. Ближайший к хрусталику слой глазного бокала дифференцируется в нервный слой сетчатки, включающий собственно фоторецепторы и нейроны, которые передают сенсорные импульсы в мозг (см. рис. 16-8). Другой слой дифференцируется в пигментный эпителий сетчатки. [c.133]

    Каждый периферический нерв состоит из множества чрезвычайно длинных отростков нервных клеток-аксонов, из которых одни принадлежат сенсорным нейронам и передают информащпо мозгу, а другие принадлежат мотонейронам и передают команды от мозга к мышцам. Тела нервных клеток расположены либо внутри центральной нервной системы (в случае мотонейронов, управляющих [c.72]

    Клетка скелетной мышцы позвоночного принимает обычно только один сигнал от единственного мотоненрона, тело которого находится в спинном мозгу. В отличие от этого на самом мотонейроне синапсы образуют несколько тысяч нервных окончаний от сотен и тысяч различных нейронов его тело и дендриты почти полностью покрыты синапсами (рис. 18-35). Некото1Нле из этих синапсов передают сигналы от головного мозга, другие достввляют сенсорную информацию от мышц и кожи, третьи сообщают результаты вычислений , производимых вставочными нейронами спинного мозга. Мотонейроны должны интегрировать информацию, получаемую из этих разнообразных источников, и принимать решение отвечать ли на нее, посылах сигналы по своим собственным аксонам, или же оставаться в покое. [c.104]

    Прикосновение к сифону ведет к возбуждению грушш сенсорных нейронов. Эти нейроны образуют возбуждающие синапсы на других нейронах, которые непосреяственно управляют мышцами, втягивающими жабру. Реакцию последней группы нейронов на импульсы от сенсорных нейронов можно регистрировать внутриклеточным электродом оказывается, во время привыкания величина постсинаптического потенциала при повторном возбуждении уменьшается. При сенситизации наблюдается обратный эффект-постсинаптический потенциал возрастает. И в том и в другом случае изменение величины потенциала-это результат изменения количества медиатора, высвобождаемого из пресинаптических окончаний возбужденных сенсорных нейронов. Высвобождение медиатора контролируется ионами Са , входящими в окончание под действием нервных импульсов. В случае привыкания повторяющееся возбуждение сенсорных клеток модифицирует белки каналов в окончаниях их аксонов таким образом, что приток Са в клетку уменьшается напротив, при сенситизации поступление Са в клетку возрастает. Наиболее понятны молекулярные механизмы изменений, происходящих при сенситизации. [c.117]

    Любой сигнал, получаемый нервной системой, должен прежде всего преобразоваться в электрический. Значение электрического сигнала будет зависеть от устройства, осушествившего этот перевод из одной формы в другую-от так называемого преобразователя. Каждый преобразователь реагирует на внешние факторы (или события) определенного рода, такие как свет, температура, химическое вешество, механическая сила или перемешение. В одних случаях преобразователь представляет собой часть нейрона, прово-дяшего импульсы, в других-это часть сенсорной клетки, специально приспособленной для преобразования сигналов, но не участвующей в осуществлеини дальней связи такая клетка передает затем свои сигналы близлежащему нейрону через синапс. [c.119]

    Почти в точности на тех же принципах основано преобразование сигналов в органах чувств. Это можно хорошо проиллюстрировать иа примере мышечных рецепторов растяжения, где первоначальный стимул, вызывающий изменение проницаемости мембраны, имеет механическую, а не химическую природу. Рецепторы растяжения доставляют нервной системе информацию о длине мышцы и скорости ее изменения. Эта сенсорная обратная связь (наряду с сигналами от головного мозга и некоторых частей спинного мозга) помогает регулировать импульсацию двигательных нейронов, как это объяснено в подписи к рис. 18-45. Каждая мышца содержит группы видоизмененных мышечных волокон, образующих так называемые мышечные веретена. Каждое отдельное волокно в веретене обвито окончаниями сенсорных нейронов (рис. 18-45). При растяжении волокон веретена в этих нейронах возникают импульсы (потенциалы действия), которые передаются в спинной мозг. Электрическое поведение одного сенсорного нейрона можно исследовать с помошью внутриклеточного электрода, помещенного около того места, где нейрон прилегает к волокну. Частота импульсного разряда градуально [c.119]

    Конвергенция, дивергенция и латеральное торможение встречаются в нервной системе повсюду и играют важную роль в локальной обработке информации многими группами нейронов, лежащих рядом друг с другом н имеющих дело со связанными между собой сенсорными данными. В качестве следующего простого (хотя и гипотетического) примера на рис. 18-58 показано, каким образом корковая клетка могла бы избирательно реагировать на полоску, ориентированную определенным образом, в результате конвергенции сигналов от ряда ганглиозных клеток сетчатки. При помощи подобных механизмов типичный нейрон высшего уровня зрительной системы, возбуждаемый комбинацией сигналов от группы нейронов низщего уровня, может выявлять и более абстрактные, более сложные черты данного комплекса зрительных стимулов. Таким образом, информация, заключенная в электрическом сигнале отдельного нейрона, постепенно обогащается по мере передачи ее вверх по зрительным путям. [c.129]

    Специальные преобразователи переводят сенсорные стимулы в форму нервных сигналов. Например, в рецепторе растяжения мышцы окончание сенсорного нерва деполяризуется при растяжении и величина деполяризации-рецепторный потенциал-для дальнейшей передачи перекодируется в частоту импульсного разряда. Слуховые волосковые клетки, избирательно реагирующие на звуки определенной частоты, сами не посылают импульсов, а передают сигналы о величине рецетпорного потенциала соседним нейронам через химические синапсы. Таким же образом действуют фоторецепторы глаза. В фоторецепторах свет вызывает конформационное изменение молекул родопсина, и это благодаря участию внутриклеточного второго посредника ведет к закрытию натриевых каналов в плазматической мембране, к ее гиперполяризации и в результате-к уменьшению количества высвобождаемого медиатора. Далее вставочные нейроны передают сигнал ганглиозным клеткам сетчатки, которые пересылают его в мозг в виде потенциалов действия. Проходя череъ нейронную сеть с конвергентными, дивергентными и тормозными латеральными связями, информация подвергается обработке, благодаря которой клетки высших уровней зрительной системы могут выявлять более сложные особенности пространственного распределения световых стимулов. [c.130]

    Какова бы ни была роль регуляции числа мотонейронов у эмбриона, ее механизм находится в интересной зависимости от мышечной активности. У зародышей позвоночных начинаются беспорядочные, конвульсивные движения почти сразу же после того, как у них начинают формироваться нервно-мышечные соединения. Эти движения-результат спонтанного возникновения нервных импульсов в центральной нервной системе, и они наблюдаются даже у тех эмбрионов, у которых сенсорные нейроны разрушены. Если зародыша обработать ядом, блокирующим передачу в нервно-мышечных соединениях (таким, как кураре), то даижения прекратятся. Можно было бы предположить, что подобное воздействие либо никак не повлияет на гибель мотонейронов, либо усилит ее. На самом деле эта обработка дает противоположный эффект до тех пор пока поддерживается блокада, практически все мотонейроны сохраняются. Каков бы ни был механизм этого явления, ясно, что /мышечная активность важна для нормального развития двигательной систе мы, точно так же как получение внешних стимулов необходимо для нормального развития сенсорных систем (см. ниже) в обоих случаях электрические сигналы способствуют поддержанию нервных связей. [c.144]

    Как уже говорилось, такая организация, несомненно, важна для переработки сенсорной информации в зрительной системе, где двумерное изображение видимого мира, создающееся на сетчатке, проецируется-через ряд промежуточных нейронных уровней-на зрительную область коры головного мозга. Подобный принцип мы находим и в других сенсорных системах в мозгу имеется карта (проекция) поверхности тела, отображающая картину осязательных стимулов, а также карта спектра слышимых звуков, располагаемых в соответствии с их высотой, и т. п. Во всех этих случаях многочисленные нейроны в каждой большой группе дейсгвуют параллельно, обрабатывая информацию одного и того же общего характера, но приходящую от разных областей воспринимаемого мира. Благодаря непрерывности отображения нейроны, имеющие дело с очень сходными сенсорными сигналами, расположены в тесном соседстве друг с другом и поэтому могут взаимодействовать при обработке информации. Кроме того, упорядоченность нейронных проекций иа каждом уровне гарантирует, что каждый элемент информации после такой обработки не выпадет из общего контекста, сохранит связь с определенным участком воспринимаемого мира. Поэтому непрерывные нейронные проекции имеют фундаментальное значение для организации мозга позвоночных. Как же образуются такие непрерывные проекции в процессе развития нервной системы Этот вопрос будет отправной точкой при рассмотрении формирования нервных связей в зрительной системе. [c.147]

    Правило ассоциативного синаптогенеза служит, по-вндимому, мощным организующим фактором для сенсорных систем. В принципе это правило могло бы обеспечить общий механизм создания таких нервных сетей, в которых отдельные клетки специфически отвечали бы на группу постоянно взаимосвязанных сенсорных стимулов любого рода. Возможно, что именно [c.153]

    Адреналин накапливается в клетках мозгового слоя надпочечников в особых хромаффиновых гранулах. Последние представляют собой ограниченные мембраной структуры диаметром около 0,1 мкм (рис. 25-8), содержащие адреналин (около 20%) и АТР (около 4%). Под действием нервных импульсов, достигающих мозгового слоя надпочечников, из этих гранул путем экзоцитоза выделяется адреналин, который попадает в окружающую внеклеточную среду и далее в кровь. Обычная концентрация адреналина в крови составляет около 0,06 мкг/л, или приблизительно 10 М, но под влиянием сенсорных воз- [c.787]

    Нейротропный яд. Его способность вызывать наркоз обусловлена преимущественным вовлечением в патологический процесс стволовых структур мозга. Функциональные нарушения деятельности нервной системы под влиянием X. сочетаются с органическим поражением стволовых структур мозга преимущественно мезенцефально-каудальных его отделов (Антонюженко и др.). Степень и глубина поражения стволовых структур определяют характер интоксикации на разных ее этапах. Наиболее ярким выражением начальных стадий интоксикации являются локальные пароксизмы, обусловленные дисфункцией стволовой ретикулярной формации. О функциональном характере поражения нервной системы в этот период свидетельствует обратимость проявлений этой стадии при прекращении контакта с X. Дистальные нейротрофические и сенсорные нарушения вегетативных функций при продолжающейся интоксикации такл е связаны с патологическими изменениями стволовой ретикулярной формации и гипо- [c.419]


Смотреть страницы где упоминается термин Нервные сенсорные: [c.329]    [c.342]    [c.357]    [c.280]    [c.142]    [c.348]    [c.62]    [c.72]    [c.111]    [c.121]    [c.137]    [c.32]    [c.420]    [c.470]   
Молекулярная биология клетки Том5 (1987) -- [ c.137 ]




ПОИСК







© 2025 chem21.info Реклама на сайте