Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклопластики свойства

    В литературе часто встречается термин равнонапряженный , или равнопрочный , стеклопластик. Он применяется для обозначения ортотропного стеклопластика, получаемого в результате укладки 1 1. Этот термин надо признать неудачным, поскольку у такого стеклопластика свойства равны только в двух направлениях— направлениях армирования. Во всех остальных направлениях, даже в плоскости армирования, свойства иные. В то же время равномерной укладкой во всех направлениях (в какой-нибудь плоскости) можно создать материал, обладающий изотропными свойствами в плоскости армирования. Для получения материала, обладающего изотропией упругих свойств в некоторой плоскости (трансверсально-изотропного), достаточно ориентировать ленты полуфабриката в трех направлениях [c.198]


    Структура стеклопластиков определяется в основном видом, соотношением размеров армирующих элементов и расположением их в полимерной матрице. Механические характеристики стеклопластиков, в свою очередь, определяются главным образом арматурой, поэтому влияние структуры композита на его упруго-прочностные свойства не вызывает сомнения. Однако исследования показывают, что структура оказывает определенное влияние также на теплофизические, светотехнические, радиотехнические, электротехнические и другие свойства композитных материалов. Это относится прежде всего к ориентированным стеклопластикам, свойства которых можно широко варьировать изменением структуры за счет изменения как типа армирующего материала, так и схемы его ориентации. [c.117]

    При одинаковом числе продольных и поперечных слоев волокон в стеклопластике свойства листовых материалов гарантируются показателями, приведенными на стр. 271. [c.269]

    Стеклопластики найдут широкое применение в машиностроении и, в частности, при изготовлении крупногабаритных изделий, таких, как кузовы автомобилей, корпусы мелких судов, детали вагонов. По прочности армированные стеклопластики превосходят сталь, при этом имеют значительно более низкий удельный вес (в 1,5 раза по сравнению с дюралюминием и в 4 раза—со сталью), а также высокую коррозийную стойкость, не требуют окраски. Трудоемкость изготовления деталей из них, благодаря возможности получения изделий даже сложной конфигурации, за одну операцию значительно ниже, чем изготовление соответствующих деталей из металлов. Совокупность этих свойств делает стеклопластики одним из основных конструкционных материалов, производство которых все время увеличивается. Создание в республике производства стеклопластиков позволит высвободить значительное количество металла и обеспечить потребности машиностроения, а также развить новые заводы по выпуску кузовов автомобилей и других крупногабаритных изделий- [c.372]

    Механические свойства армированных пластиков зависят главным образом от типа, количества и ориентации армирующего материала, в то время как химическая стойкость их определяется типом и количеством связующего. Стеклопластики, предназначенные для работы в агрессивных средах, содержат большое количество связующего и армируются [c.224]

    Проектирование изделий из стеклопластиков почти не отличается от проектирования изделий из металлов. Следует только учитывать повышенную, по сравнению с металлом, прочность на растяжение и сжатие и пониженную прочность на изгиб. Для преодоления последнего недостатка в местах повышенных нагрузок необходимо предусматривать упрочнение материала за счет увеличения толщины или установки ребер жесткости. Использование металла или древесины для повышения жесткости не рекомендуется в виду того, что различие в механических свойствах этих материалов и стеклопластиков может привести к появлению сильно напряженных мест и срезывающих усилий. Кроме того, различия коэффициентов термического расширения и появление продуктов коррозии металлов могут вызвать напряжения, достаточные для разрушения стеклопластика. [c.225]


    Контроль за качеством изготовляемого оборудования должен включать проверку исходных материалов, испытание образцов стеклопластика на физико-механические свойства, проверку размеров изделий, качества сборки и состояния поверхности. Кроме того, оборудование, предназначенное для работы с жидкими веществами, должно быть испытано на герметичность. Оборудование, работающее под давлением, подвергается гидравлическим испытаниям, а оборудование, работающее под вакуумом — гидростатическим и вакуумным испытаниям. Все вращающиеся детали, например ротор вентиляторов и воздуходувок, должны быть тщательно сбалансированы и испытаны в течение не менее 15 мин при скорости, превышающей максимальную рабочую на 20%. При этих испытаниях в оборудовании создают статическое давление и отмечают степень изгиба изделия [273]. [c.225]

    Ненасыщенные полиэфирные смолы, представляющие собой растворы ненасыщенных полиэфиров в мономерах, способных к сополимеризации с этими полиэфирами, характеризуются высокой теплостойкостью (выше 150—170 °С), хорошими электроизоляционными и механическими свойствами, стойкостью к воде, кислотам, бензину и маслам. Они используются в качестве связующих холодного и горячего отверждения при изготовлении стеклопластиков (стеклошифер и др.), в качестве основы для лаков, клеев, пластобетонов и т. д. [c.74]

    Пластмассы обладают хорошими электроизоляционными свойствами.и имеют низкую теплопроводность. Так, стеклопластики благодаря малой теплопроводности выдерживают кратковременное воздействие температуры до 1000 °С с небольшим разрушением поверхностных слоев [119]. Таким образом, следует ожидать высокую устойчивость их к воспламенению в кислороде. [c.155]

    Механические свойства пластмасс с наполнителем в значительной степени зависят от свойств и количества наполнителя. Для некоторых из них (текстолит, стеклопластики) особенно важна ориентация волокон или ело-ев бумаги (ткани), составляющих наполнитель. Но даже и при неблагоприятном направлении разрушающих нагрузок пластмассы с наполнителями обнаруживают высокую прочность в условиях криогенных температур. [c.155]

    На основе бис-фенола и эпихлоргидрина получают эпоксидные смолы. Эти смолы липкие и хорошо пристают к металлам, стекловолокну и другим материалам. Эпоксидные и полиэфирные смолы применяются для изготовления стеклопластиков. Этот новый материал состоит из стекловолокна, т. е. стеклянных тонких нитей, склеенных смолой, с добавкой наполнителя. При содержании в стеклопластике около 70% стекловолокна материал приобретает наибольшую прочность. Стеклопластики имеют большую прочность на разрыв, чем алюминий и приближаются по этому свойству к некоторым сортам стали. [c.346]

    Стеклопластики получают путем смешивания смолы со стекловолокном и наполнителем, который придает смоле твердость, и нагревания под давлением. Применение стеклопластиков быстро расширяется, поскольку этот материал обладает многими ценными свойствами. Из них изготовляют корпуса морских и речных судов, кузова автомобилей и другие изделия большой прочности. [c.346]

    Фторопластовые трубы, помимо высоких антикоррозионных и диэлектрических свойств, обладают также стойкостью к низким и высоким температурам (область применения от —100 до - -250°С) и высокой (по сравнению с другими неметаллическими трубами) прочностью. Еще большей прочностью обладают трубы из стеклопластиков (стекловолокно, пропитанное связующими смолами). Они отличаются высокой коррозионной стойкостью и небольшой массой, но газопроницаемы, что ограничивает их применение. [c.310]

    Анизотропия свойств у углепластиков выражена еще более резко, чем у стеклопластиков. Связано это с тем. что отношение модулей упругости наполнителя и связующего у углепластиков (100 и более) существенно выше, чем у стеклопластиков (20 - 30), Кроме того, для углепластиков характерно наличие разницы между упругими свойствами самих волокон в направлении вдоль оси и перпендикулярно к ней, что приводит к дополнительной анизотропии. Обычно в конструкциях нужна меньшая анизотропия механических характеристик, В этом случае используют перекрестно армированные мате- [c.84]

    Первые углепластики были получены в конце 50 — начале бО-х годов текущего столетия [9-1,2]. В последующее время в связи с разработкой углеродных волокон с высокими удельными значениями модуля упругости и прочности при растяжении, хемостойкостью и другими уникальными свойствами началось промышленное производство этих материалов, в первую очередь взамен стеклопластиков, а в дальнейшем металлов и изделий из дерева. [c.506]

    СТЕКЛОПЛАСТИКИ — полимерные материалы, армированные стекловолокнистым наполнителем (стекловолокном, волокном из кварца и др.). Связующим веществом служат термопластические и термореактивные полимеры. С., обладающие хорошими электро- и радиотехническими свойствами, применяются в производстве электрооборудования, работающего в шахтах, буровых установках, судах. С. используют для кровли, оборудования санитарно-технических узлов, изготовления труб, выдерживающих высокое давление и не подвергающихся коррозии. С. считаются прочнее стали. [c.237]

    Комбинация ненасыщенных полиэфиров со стеклотканями или стекловолокном приводит к стеклопластикам с уникальными механическими свойствами. Эти стеклопластики исполь- [c.295]


Таблица 15.7. Некоторые свойства стеклопластиков на основе эпоксидных смол Таблица 15.7. <a href="/info/219535">Некоторые свойства</a> стеклопластиков на <a href="/info/808282">основе эпоксидных</a> смол
    Кроме литья, листа и трубок из стекла делают нити (стекловолокно). Нити изготовляют, вытягивая расплавленное стекло через фильеры. Из стекловолокна получают прочные химически стойкие ткани, обладающие хорошими электро-, тепло и звукоизолирующими свойствами (о стеклопластиках см. гл. XIV,. 4). В последнее время научились получать закристаллизованные стекла (ситаллы), имеюшие перспективы использования, в частности в авиации. [c.296]

    После отверждения получаем прозрачную смолу, неплавкую и нерастворимую, с высокими механическими свойствами. Эти свойства могу быть улучшены различными наполнителями (стеклопластики) (табл. 137). [c.506]

    Применение ненасыщенных полиэфиров. Ненасыщенные полиэфиры находят все возрастающее применение в качестве связующего в производстве стеклопластиков [150]. Это объясняется несколькими соображениями. Высокая прочность пластических масс, армированных стекловолокном или стеклотканью, вывела их в ряд конструкционных материалов, имеющих определенные преимущества перед металлами (низкий удельный вес, высокая упругость, высокая стойкость к вибрационным нагрузкам, хорошие теплоизоляционные свойства, радиопрозрачность, простота сборки, достаточная жесткость конструкции, особенно в сочетании с заполнителем из армированного пенопласта). [c.728]

    В табл. XI.9 приведены некоторые данные о физико-механических свойствах полиэфирных стеклопластиков. [c.729]

Таблица XI. 9 Физико-механические свойства полиэфирных стеклопластиков Таблица XI. 9 <a href="/info/129852">Физико-механические свойства</a> полиэфирных стеклопластиков
    Набухание в воде одновременно приводит таклсе к изменению размеров и свойств материала. При этом пе всегда количество поглощенной воды определяет изменение свойств. Так, наиример, древеснослоистые пластики (ДСП) па основе фенольных смол поглощают до 20% воды, стеклопластики па полиэфирной смоле до 3,5% воды, а теряют механическую прочность почти одинаково. [c.275]

    Стеклопластики из прессматериалов типа С обычно имеют слоистую структуру. Исключение составляют однонаправленные стеклопластики, свойства которых в плоскости, перпендикулярной направлению армирования, практически изотропны. Следовательно, однонаправленные стеклопластики можно отнести к трансверсально-изотропным материалам. [c.77]

    Модуль упругости силикатных волокон (особенно алюмоборосиликатных, наиболее часто используемых при получении стеклопластиков конструкционного назначения) невысок. Этим объясняется сравнительно низкая жесткость стеклопластиков — свойство, нежелательное для материалов конструкционного назначения. Поэтому большое внимание в настоящее время уделяют разработке так называемых высокомодульных волокон. Отечественная и зарубежная промышленность уже сейчас выпускают стеклянные волокна с модулем упругости (l,0-f-l,2) 105MПa. [c.30]

    Описанные ниже исследования были проведены на полиэфирном стеклопластике, свойства которого были изучены достаточно полно, чтобы обработать и проанализировать результаты эксперимента. Образцы изготовляли в лаборатории контактного формирования стеклопластика из стеклоткани типа Ипласт 35 и полиэфирной смолы чехословацкого производства СЬЗ — полиэфир 104. Ипласт 35 представляет собой стеклоткань плотностью 5,8/6, прочностью в направлении основы 276 кПЪ см, удельным весом 0,387 кПм , толщиной 0,4 мм и диаметром волокон 9 мк. [c.286]

    При взаимодействии армированных пластиков с обычными химикатами не наблюдается никаких других явлений, кроме абсорбции. Эпоксидные смолы обычно используются при изготовлении резервуаров для хранения отходов нефтяных продуктов (сероводорода, соленой или пресной воды, кислых остатков и т. д.). Другим примером использования являются самосвальные емкости для хранения удобрений и химикатов, трубы, трубопроводы для отвода пара, кожухи вентиляторов, дымовые трубы, охладительные системы и решетки градирен, скребки, оборудование, используемое в фотолабораториях. В ракетных твердотопливных двигателях топливо химически инертно к материалу корпуса. Однако при разработке систем жидкого топлива возникают некоторые проблемы. Криогенное топливо и используемые для него окислители оказывают разрушение структуры стеклопластиков. Если в качестве топлива используется жидкий водород или азот, то они не реагируют со стеклопластиком. При применении жидкого кислорода большинство органических. материалов имеют тенденцию к взрыву или создают опасность воспламенения. Эпоксидная смола и стекло химически совместимы с л- ид-ким кислородом, но могут дать взрыв при ударе [21]. Антикоррозионные свойства химического оборудования зависят от вида армирующего стекла в стеклопластике. Свойства различных видов стекла рассматривались Репег и Torres [22]. [c.151]

    Araldite 553, 555, 556 —.эпоксидные смолы для стеклопластиков Свойства вязкость 600—3000 спуаз т. отвержд. 20—250° жизнеспособность от 1 часа до 1 месяца. [c.25]

    Диол, получаемый конденсацией изомасляного альдегида и формальдегида, обладает высокой термостабильностью, причем этим свойством характеризуются различные производные диола. Сложные эфиры диола и дикарбоновых кислот с добавкой одноатомного спирта (например 2-этилгексанола) являются хорошими пластификаторами для поливинилхлорида. Они могут использоваться также для производства пластиэолей. Полиэфиры на основе диола могут применяться в качестве компонентов при производстве полиуретановых и эпоксидных смол, стеклопластиков, а также для синтеза сложноэфирных смазок. Последнее направление является наиболее перспективным и многотоннажным. [c.78]

    Наша промышленность освоила также выпуск вентиляторов из пластических материалов. Корпус таких вентиляторов выполнен из пластмассы двухслойным. Наружный слой для обеспечения прочности изготовлен из стеклопластика, а внутренний — из низкоплавких термопластиков, обладающих токопроводящими свойствами. Рабочее колесо изготовлено из тeклoплa тикai в состав которого включены антистатические присадки. Для снятия статического электричества внутренний слой корпуса и рабочее колесо заземляют. Кроме того, во избежание попадания в вентиляторы искрообразующих материалов на местных отсосах устанавливают магнитные уловители или защитные сетки. [c.55]

    Физико-механические свойства некоторых типов стеклопластиков на основе фснольнык смол и их модификаций приведены в табл. 47. [c.402]

    Специфические свойства кремнийорганических смол позволяют использовать нх для изготовления деталей, работающих как при очень низкой (—60° С), так и при высокой температуре. Стеклопластики иа основе кремнийорганических смол выдерживают длительное нагревание при температуре 260°С и кратко-зремеиное нагревание до температуры около 540° С. Предел прочности при растяжении таких стеклотекстолитов при 260° С сохраняется равным 210 Мн/м (у исходного материала 245 Мн1м ). Предел прочности прн растяжении стеклотекстолита [c.402]

    Процесс полимеризации и склеивания изделий из стеклопластика и углепластика сопровождается большим количеством различных физико-хнмичесюгх реакц 1 и агрегатными превращениями вехнества. Композиционным материалам, из которых создаются полимеры, присуще изменение их свойств под влиянием внешних воздействий [1]. Чаще всего формирование конечной структу ры полимерного материала с приданием ему определенных физических и химических свойств происходит одновременно с получением геометрической формы готового изделия. [c.222]

    Те.мпература и время прессования определяются кинетикой отверждения связующих и являются взаимозавиеящими факторами. Значения темперагуры и времени прессования выбирают с таки.м расчето.м, чтобы обеспечить заданные физико-механические свойства стеклопластиков. Известная зависимость. между степенью отверждения и физико-механическими свойства.ми связующего и стеклопластика позволяет при выборе оптимальных значений этих параметров руководствоваться зависуьмостью степени отверждения от температуры и вре.мени отверждения. Скорость нагрева также влияет на прочность изделий. При большой скорости нафева в изделии наблюдается значительное запаздывание нагрева средних слоев, что ведет к неодновременности отверждения и появлению внутренних напряжений. [c.222]

    Контактная электризация твердых тел наблюдается при-дроблении, размоле, просеивании, пневмотранспорте и движении в аппаратах пылевидных и сыпучих материалов в производствах искусственных и синтетических волокон, стеклопластиков, каучука, резины, фотопленок при прорезинивании тканей, каландрованни, вальцевании при использовании ременных передач и транспортных лент и т. д. Степень электризации твердых веществ зависит от нх физико-химических свойств, плотности их контакта и скорости движения, относительной влажности воздуха и др. Накопление электрических зарядов на твердых диэлектриках (степень их электризации) определяется главным образом их поверхностной и объемной электризацией. Хороша электризуются твердые диэлектрики, различные пластмассы, волокна, смолы, стеклоиатериалы, синтетические и натуральные каучуки, резины. [c.111]

    В производстве конструкционных материалов планируется расширить номенклатуру и увеличить выпуск композиционных материалов (стеклопластиков, углепластиков, органопластиков и др.), обеспечить повышение их качества и улучшение технических характеристик. В производстве стекловолокна и стеклопластиков намечено вырабатывать не менее 50 % стекловолокна одностадийным методом и снизить за счет этого удельный расход драгоценных металлов. По сравнению с 1985 г. в 1,5—2 раза увеличится выпуск коррозионностойкнх стеклопластиков с одновременным расширением ассортимента изделий из них для замены дорогостоящих и дефицитных материалов. Предусмотрено увеличение выпуска пресс-материалов на основе полиэфирных, термопластичных и термореактивных связующих с высокими физико-механическими свойствами, расширение производства нетканых стекловолокнистых материалов на базе прогрессивных технологических процессов. [c.183]

    Некоторые полиэфирные полимеры склеивают стеклопластики с асбестоцементными и древесноволокнистыми плитами, сотоплас-тами, а также друг с другом. Они используются при изготовлении некоторых шпаклевочных масс, применяемых для гидро- и пароизо-ляции бетона и наливных полов, приобретающих после отверждения высокую ударную прочность и стойкость к истиранию, действию воды и агрессивных сред. При добавлении паст некоторых органических красителей в диоктилфталате можно получать окрашенные монолитные полы. Иногда при изготовлении наливных полов используют полиэфирно-кумароновые мастичные составы с минеральными наполнителями. Сочетание полиэфирных эластичных полимеров с хрупкими кумароновыми полимерами позволяет создавать покрытие полов с высокими эксплутационными свойствами. Стеклоткань или стеклянное волокно, пропитанное растворами полиэфиров в стироле, превращается в стеклопласты, не уступающие по прочности стали, но со значительно меньшей плотностью. Из такого материала можно получать различные санитарно-технические изделия повышенной прочности (ванны, трубы и т. д.). [c.422]

    Из полиэфиров в строительстве в настоящее время особенно широко применяется глифталевый полимер, который получают взаимодействием глицерина [СзН5(ОН)з] и фталевого ангидрида [СвН4(С02)0]. Свойства глифталевых полимеров улучшаются добавлением масел. Эти иолимеры применяются для изготовления лаков, стеклопластиков, фасадных красок, линолеума. [c.204]

    Стеклопластики находят применение в химических, нефтеперерабатывающих и нефтехимических производствах как самостоятельные конструкционные материалы и как защитные покрытия. Нестандартное стеклопластиковое оборудование может быть изготовлено в условиях почти любого предприятия путем намотки на оправку соответствующей конфигурации нескольких слоев стеклоткани, пропитанной термореактивной смолой (полиэфирной, эпоксидной, фенолформалъдегидной и т.д, - в зависимости от коррозионных свойств рабочей среды и других требовгший), с последующей сушкой или термообра-бохкойгрежимы которых зависят от типа использованных материалов. [c.100]

    Вследствие высокой механической прочности эпоксидных стеклотексто-литов и стекловолокнитов из них изготовляют разнообразные крупногабаритные изделия, прочность которых превосходит прочность стеклопластиков, получаемых на основе ненасыщенных полиэфиров. Однако они уступают последним по показателям диэлектрических свойств, радиопрозрачности и теплостойкости. Теплостойкость эпоксидных пластических масс можно повысить, применяя в качестве исходного вещества триглицидиловый эфир циапуровой кислоты (смола, выпускаемая фирмой Шелл)  [c.741]


Библиография для Стеклопластики свойства: [c.188]   
Смотреть страницы где упоминается термин Стеклопластики свойства: [c.316]    [c.225]    [c.94]    [c.365]    [c.74]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.0 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.64 , c.101 , c.106 , c.466 ]

Технология текстильного стекловолокна (1966) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Стеклопластики



© 2025 chem21.info Реклама на сайте