Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аллостерические превращения

    Для описания модели аллостерических превращений была предложена следующая терминология относительно четвертичной структуры белков [17] а) олигомер, полимерный белок, содержащий конечное, относительно небольшое число идентичных субъединиц Ь) протомер, идентичные субъединицы внутри олигомерного белка с) мономер, полностью диссоциированный протомер или любой белок, не состоящий из одинаковых субъединиц. [c.390]


    Петля в а7-спирали закрывает доступ субстрата к центру (замок) в Г-форме. Она разрушается, а центр открывается в 7 -форме. Таким образом, фосфорилирование серина вблизи границы между субъединицами дает начало аллостерическим превращениям, которые распространяются на всю глобулу с помощью а7- и а8-спиралей, изменяющих свое взаимное расположение. [c.260]

    Кроме активного центра различают еще два центра субстратный и аллостерический. Под первым понимают участок молекулы фермента, к которому присоединяется субстрат, подвергающийся ферментативному превращению, под вторым — участок молекулы фермента, в результате присоединения к которому того или иного низкомолекулярного вещества изменяется третичная структура белковой молекулы, а следовательно, и конфигурация активного центра, что сопровождается повышением или снижением каталитической активности. [c.116]

    Очевидно, что такие процессы с участием белков, сопровождающиеся изменением их конформации, как комплексообразование (например, образование комплекса антиген-антитело), аллостерические переходы, механические превращения, также реализуются только благодаря способности белков быстро и обратимо изменять свою конфигурацию. [c.559]

    Отличительной особенностью ряда аллостерических ферментов является наличие в молекуле олигомерного фермента нескольких активных центров и нескольких аллостерических регуляторных центров, пространственно удаленных друг от друга. В аллостерическом ферменте каждый из двух симметрично построенных протомеров содержит один активный центр, связывающий субстрат 8, и один аллостерический центр, связывающий эффектор М т.е. 2 центра в одной молекуле фермента (рис. 4.4). Получены доказательства, что для субстрата аллостерические ферменты, помимо активного центра, содержат и так называемые эффекторные центры при связывании с эффекторным центром субстрат не подвергается каталитическому превращению, однако он влияет на каталитическую эффективность активного центра. Подобные взаимодействия между центрами, связывающими лиганды одного типа, принято называть гомотропными взаимодействиями, а взаимодействия между центрами, связывающими лиганды разных типов, —гетеротропными взаимодействиями. [c.126]

    Регуляция глюконеогенеза. Важным моментом в регуляции глюконеогенеза является реакция, катализируемая пируваткарбоксилазой. Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидрогеназного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу. [c.341]


    Аллостерические ферменты состоят как минимум из двух идентичных субъединиц, каждая из которых имеет один активный и один регуляторный (аллостерический) центры. При взаимодействии субстрата или эффектора с ферментом происходит изменение конформации одной из субъединиц, что вызывает модификацию высших структур второй субъединицы. Конформационные превращения обусловливают изменения каталитической активности молекулы фермента. [c.81]

    Аллостерическими активаторами киназы являются конечные продукты ОДП ацетил-КоА, НАДН, АТФ. Их накопление переводит ПДГ (Е[) в неактивную фосфорилированную форму, прекращается превращение пирувата. -в ацетил-КоА, и он может быть использован, например, для синтеза глюкозы. [c.264]

    Регуляторным ферментом в глюконеогенезе является пируваткарбоксилаза, катализирующая первую необратимую реакцию этого процесса. Положительным аллостерическим эффектором фермента (активатором) является ацетил-КоА. Поэтому биосинтез глюкозы происходит тогда, когда в митохондриях накапливается больше ацетил-КоА, чем требуется для ЦТК. Кроме того, ацетил-КоА является ингибитором пируватдегидрогеназного комплекса, т. е. замедляет окисление пирувата и способствует биосинтетическому превращению его в глюкозу. [c.276]

    Цитрат связывается с аллостерическим центром ацети л-Ко А-карбоксилазы и реакция превращения ацетил-КоА в малонил-КоА резко возрастает. [c.317]

    Способность связывать спиновые зонды может изменяться в зависимости от состояния белка, поэтому степень связывания спиновых зондов можно использовать для изучения конформационных превращений белковых макромолекул. Так, например, с помощью спин-меченых трифосфатов (таких, например, как радикал AXV), обратимо связывающихся с молекулами гемоглобина, удалось исследовать аллостерические взаимодействия в этом белке [191, 194]. [c.192]

    Использование метаболитов, меченных дало возможность проследить их судьбу в интактных организмах и, следовательно, понять физиологическую роль тех биохимических последовательностей, в которых эти метаболиты участвуют. Однако, как будет видно из последующих рассуждений, интерпретация результатов, полученных при использовании радиоактивных изотопов, сопряжена с определенными трудностями. Во-первых, как мы видели, одно и то же соединение может принимать участие сразу в нескольких метаболических процессах, а во-вторых, благодаря аллостерическим свойствам ферментов метаболиты, участвующие в одном ка-ком-нибудь процессе, могут изменять скорости реакций другого процесса. Помимо активного центра, к которому присоединяется субстрат, Б молекуле фермента может иметься другой участок, способный присоединяться к другому метаболиту, не являющемуся субстратом. Дальнейшим превращениям присоединившийся метаболит подвергаться не будет, однако в результате его присоединения может измениться конфигурация молекулы фермента, что в свою очередь может изменить скорость катализируемой реакции. Это обстоятельство нельзя упускать из виду при изучении распределения радиоактивности после добавления меченого метаболита к сложной ферментной системе. Такие трудности, возникающие при использовании радиоактивных изотопов, рассмотрим на более подробном примере изучения некоторых систем, проведенного Г. Кребсом [29]. [c.21]

    Появление вторичных изоферментов (группы 4—6 в табл. 12.4) может быть обусловлено рядом причин. Они образуются в результате модификации одиночной полипептидной цепи, причем эта модификация может иметь, а может и не иметь биологическое значение. Например, свойства нескольких ферментов, участвующих в обмене гликогена, зависят от того, в каком состоянии они находятся, фосфорилированном или де-фосфорилированном [818]. В результате гликоген-фосфорилаза,, киназа фосфорилазы и гликоген-синтаза существуют по крайней мере в двух формах — фосфорилированной и дефосфорили-рованной — и различаются по каталитической активности и свойствам эти группы ферментов должны быть включены в группу 4а. Ферменты, которые могут находиться в разных конформациях, например в результате аллостерических превращений, должны быть отнесены к группе 6, хотя специфика этих взаимопревращений и легкость, с какой они происходят, крайне затрудняет разделение таких форм. Конформационные изменения, по-видимому, совершенно необходимы для функционирования большинства ферментов они участвуют в осуществлении каталитического и регуляторного действия, но предположение о том, что ферменты могут находиться в более чем одной стабильной конформации, не связанной с катализом, не получило особого признания. Изоферменты этого типа, так называемые конформеры , пытались обнаружить с помощью метода обратимой денатурации [1273], и обычно эти попытки оказывались безуспешными. Тем не менее можно привести пример фермента такого рода — это кислая фосфатаза эритроцитов [1790]. [c.113]

    Скорость превращения веществ в альтернативных метаболических путях, а значит и их предпочтительная направленность решающим образом зависят от особенностей функционирования ферментов субстратного цикла. Для таких ферментов характерна, как правило, реци-прокная регуляция с участием аллостерических эффекторов. В случае рассматриваемого субстратного цикла эффекторами являются АМФ — ингибитор фруктозо-1,6-дифосфатазы и активатор фосфофруктокиназы, а также цитрат-ион, являющийся активатором фруктозо-1,6-дифосфатазы и ингибитором фосфофруктокиназы. [c.354]


    Наиболее широко распространенным механизмом регуляции ферментов в клетках является, по-видимому, аллостерическая активация или ингибирование, которые вкратце рассмотрены выше (разд. Б, 6). Метаболические пути контролируются аллостерическими механизмами самых разных типов наиболее распространенными из них являются следующие два механизма. Первый может быть назван активация предшественником. Метаболит, действующий как аллостерический эффектор, включает фермент, катализирующий превращение либо этого же метаболита, либо продукта, находящегося немного далее в цепи превращений. Например, на рис. 6-15 метаболит С (предшественник) активирует фермент, который катализирует практически необратимое превращение соединения D. В других случаях активация является менее прямой. Вк,тюченный фермент может участвовать в образовании второго [c.69]

    Этот фермент катализирует превращение АТР в циклический АМР (циклический аденозинмонофосфат, или сАМР). Химические аспекты этой реакции обсуждаются в гл. 7, разд. Д, 8. Циклический АМР иногда называют вторым посредником ( se ond messenger ), поскольку он переносит сообщение (message), доставленное клетке первым посредником (гормоном). Циклический АМР быстро гидролизуется до АМР фосфодиэстеразой (стадия б на схеме см. также гл. 7, разд. Д, 8). Однако пока сАМР существует, он действует как аллостерический эффектор по отношению к протеинкиназам (стадия в на схеме), которые катализируют такие реакции модификации, как фосфорилирование гликогенсинтетазы (см. предыдущий раздел, а также гл. 11, разд. Е, 3). [c.70]

    Исследование МЬ и НЬ дает, однако, информацию, весьма ценную для понимания свойств обычных и аллостерических ферментов, для понимания электронио-конформациопных взаимодействий. Связывание Ог и других лигандов этими белками вполне сходно со связыванием субстрата ферментом. Молекулярный кислород проникает в полость молекул МЬ и НЬ, но, в отличие от субстрата, не подвергается химическому превращению. Иногда МЬ и НЬ называют почетными ферментами . [c.206]

    Везе полагает, что тРНК также испытывает конформационное превращение при взаимодействии с рибосомой, а затем с мРНК и моделирует это превращение. Трансляция есть аллостерический процесс. [c.596]

    Система регуляции биохимических процессов является многоуровневой. Она начинает функционировать уже на уровне отдельных биополимеров, прежде всего ферментов и их комплексов. Очевидно, например, что соотношение альтернативных процессов (VIII.26) и (VIII.27) превращения пирувата - его восстановления до молочной кислоты или окислительного декарбоксилирования—зависит от того, в какой степени клетка обеспечена кислородом. В цепи биохимических процессов, приводящих к биосинтезу пиримидиновых нуклеотидов (см. 9.6), достаточно воздействовать на первый фермент цепи - аспартат карбамоилтрансферазу, чтобы повлиять на весь процесс образования конечных продуктов. Это осуществляется с помощью ЦТФ, который выступает в роли аллостерического ингибитора фермента и служит сигналом, сообщающим о достаточном количестве пиримидиновых нуклеотидов и целесообразности прекратить их дальнейшее производство. Эти простейшие типы регуляции, основанные на влиянии концентрации одного из субстратов на соотношение альтернативных путей превращения другого субстрата или на участии аллостерических эффектов, будут рассмотрены в 10.1. [c.420]

    Аллостерическая регуляция может использоваться не только для включения и выключения работы ферментов, но и для изменения их специфичности. Это видно на примере фермента рибонуклеозиддифосфат редуктазы, катализирующей превращение всех четырех рибонуклеозиддифосфатов в соответствующие дезоксирибонуклеотиды, которые после дополнительного фосфорилирования поступают в синтез ДНК. Фермент имеет несколько регуляторных центров. Один из них, специфичный к адениловым нуклеотидам, регулирует общую скорость каталитических превращений. В этом центре АТФ работает как аллостерический активатор, а дАТФ — как аллостерический ингибитор. Но, кроме того, у фермента имеются центры, управляющие его специфичностью по отношению к разным [c.423]

    Киназа фосфорилазы относится к группе протеинкиназ А, активность которых регулируется аденозин-3, 5 -циклофосфатом (цАМФ). Такие протеинкиназы содержат наряду с каталитическими субъединицами регуляторные субъединицы, содержащие центры узнавания цАМФ, который играет роль аллостерического активатора протеинкиназы. В результате этого возникает еще одна регуляторная ступень, предшествующая активации фосфорилазы. Принципиально отличаясь по своему химическому содержанию, эта ступень тем не менее работает по сходной схеме. Появление цАМФ является ответом на внешний сигнал, включающий фермент аденилатциклазу, катализирующий превращение АТФ в цАМФ (см.  [c.425]

    В настоящее время изучены многие мультиферментные комплексы, функционирующие на разных этапах метаболизма. Одним из таких комплексов является совокупность ферментов, катализирующих синтез пиримидинов из аспартата в бактериальных клетках. Аллостерическим ферментом в данном случае является аспартат-карбомоилаза, катализирующая первую стадию процесса, а именно превращение аспартата в карбомоиласпартат. [c.82]

    Регуляция темновой стадии фотосинтеза. Регуляторным ферментом превращения Oj в углеводы является первый фермент цикла Кальвина — ри-булозо-1,5-дифосфаткарбоксилаза. При регуляции по аллостерическому механизму ингибитором фермента является один из центральных метаболитов цикла Кальвина — фруктозо-1,6-дифосфат, а активатором — фруктозо-6-фос-фат. В свою очередь, оба эффекта связаны с активацией цикла Кальвина при действии квантов света по схеме  [c.218]

    Классическим примером аллостерического ингибирования может служить ферментная система Е. соИ, катализирующая синтез L-изолейцина из L-треони-на, включающая пять ферментативных реакций. Ингибирование по типу обратной связи процесса превращения треонина в изолейцин приведено ниже  [c.406]

Рис. 13-16. Гормональная регуляция ферментативной реакции. В результате присоединения гормона адреналина к специфическим рецепторам, находящимся на поверхности клеток печени, образуется при участии связанного с мембраной фермента (адеяилатциклазы) циклический аденилат. Последний функционирует как аллостерический активатор, или внутриклеточный посредник, под действием которого гликоген-фосфорилаза переходит из неактивной формы в активную, что влечет за собой ускорение превращения гликогена печени в глюкозу крови. Подробно этот метаболический путь описан в гл. 25. Рис. 13-16. Гормональная <a href="/info/1351088">регуляция ферментативной реакции</a>. В <a href="/info/1506251">результате присоединения</a> <a href="/info/1649184">гормона адреналина</a> к <a href="/info/32074">специфическим рецепторам</a>, находящимся на поверхности клеток печени, образуется при участии связанного с <a href="/info/188289">мембраной фермента</a> (адеяилатциклазы) циклический аденилат. Последний функционирует как <a href="/info/105652">аллостерический активатор</a>, или <a href="/info/1339179">внутриклеточный посредник</a>, под действием которого <a href="/info/490258">гликоген-фосфорилаза</a> переходит из <a href="/info/714561">неактивной формы</a> в активную, что влечет за <a href="/info/1795776">собой</a> ускорение превращения гликогена печени в <a href="/info/187192">глюкозу крови</a>. Подробно этот <a href="/info/188015">метаболический путь</a> описан в гл. 25.
    Глюконеогенез ЭТО образование нового сахара из неуглеводных предшественников, среди которых наибольшее значение имеют пируват, лактат, промежуточные продукты цикла лимонной кислоты и многие аминокислоты. Подобно всем прочим биосинтетическим путям, ферментативный путь глюконеогенеза не идентичен соответствующему катаболическому пути, регулируется независимо от него и требует расхода химической энергии в форме АТР. Синтез глюкозы из пирувата происходит у позвоночных главным образом в печени и отчасти в почках. На этом биосинтетическом пути используются семь ферментов, участвующих в гликолизе они функционируют обратимо и присутствуют в большом избытке. Однако на гликолитическом пути, т. е. на пути вниз , имеются также три необратимые стадии, которые не могут использоваться в глюконеогенезе. В этих пунктах глюконеогенез идет в обход гликолитического пути, за счет других реакций, катализируемых другими ферментами. Первый обходный путь-это превращение пирувата в фосфоенолпируват через оксалоацетат второй-это дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, и, наконец, третий обходный путь-это дефосфорилирование глюкозо-6-фосфата, катализируемое глюкозо-6-фосфатазой. На каждую молекулу D-глюкозы, образующуюся из пирувата, расходуются концевые фосфатные группы четырех молекул АТР и двух молекул GTP. Регулируется глюконеогенез через две главные стадии 1) карбоксилирование пирувата, катализируемое пируваткарбоксилазой, которая активируется аллостерическим эффектором ацетил-СоА, и 2) дефосфорилирование фруктозо-1,6-дифосфата, катализируемое фруктозодифосфатазой, которая ингибируется АМР и активируется цитратом. По три атома углерода от каждо- [c.617]

    Это тоже одна из важных центральных реакций в обмене аминокислот, потому что это главный путь превращения свободного аммиака, который, как известно, токсичен, в нетоксичный глутамин для переноса кровью (разд. 19.12). Глутаминсинтетаза-аллостерический фермент. У Е. соН и других прокариот каталитическая активность глутаминсинтетазы регулируется несколькими метаболитами, [c.655]

    Превращение лактата в щавелевоуксусную кислоту осуществляется путем карбоксили-рования пировиноградной кислоты. Ацетоуксусная кислота очень быстро превращается в ацетилкофермент А, который, как известно из работ Д. Кича и М. Атера [311, является аллостерическим эффектором пируваткарбоксилазы. Добавление в систему ацетоуксусиой кислоты вызывает накопление ацетилкофермента А, который в свою очередь ускоряет карбоксилиро-вание пировиноградной кислоты и обеспечивает этим быстрое превращение лактата в глюкозу. [c.23]

    Полная надежность этого регуляторного механизма и аналогичное регулирование обратного (биосинтетического) процесса обеспечиваются тем, что большинство фруктозо-1,6-дифосфатаз, специфичных ферментов, катализирующих гидролитическое превращение фруктозо-1,6-дифосфата во фруктозо-6-фосфат (реакция XI.5а), ингибируется высокими концентрациями субстрата, а также АМФ (последнее в результате аллостерического эффекта). [c.287]

    Регулирование сложной цепи химических реакций, называемой клеточным метаболизмом, несомненно, является жизненно важным. В настоящее время известно, что для биосинтеза пуринов существует ряд возможных контрольных механизмов, которые включают подавление синтеза метаболитов самими же метаболитами, родственными с ними веществами или конечными продуктами. Так называемое ингибирование по принципу обратной связи может влиять либо на активность, либо на синтез фермента, ответственного за образование метаболита. Так, активность фосфорибозилпирофосфатами-дотрансферазы (которая катализирует синтез рибозиламин-5-фосфата из глутамина и рибозо-1-пирофосфат-5-фосфата) заметно подавляется АМФ, АДФ, АТФ, ГМФ, ГДФ и ИМФ, но не ингибируется большим числом других пуриновых или пиримидиновых производных, в случае некоторых мутантных штаммов бактерий с генетическим блоком, ведущим к накоплению предшественников аминоимида-зола, некоторые пурины могут вызывать аллостерическое торможение, если только генетический блок не препятствует взаимопревращению пуринов. Однако, когда это взаимопревращение затруднено, аденин становится специфическим ингибитором (препятствует накапливанию предшественников имидазола) и контроль по принципу обратной связи осуществляется на уровне аденина (или аденозина, или АМФ), а не с помощью других пуринов. Превращение гуанозин-5 -фосфата в производные аденина (через восстановительное дезаминирование ГМФ до инозин-5 -фосфата) заметно ингибируется АТФ, что свидетельствует о возможности контроля производными гуанина за синтезом адениновых нуклеотидов. Взаимоотношения между этими отрицательными типами контроля за скоростью синтеза и концентрацией нуклеотидов в клетке и положительными моментами взаимосвязи биосинтетических реакций, как, например, потребность АТФ для синтеза ГМФ и ГТФ для синтеза АМФ, представляются исключительно сложными. Как уже упоминалось выше, контроль за синтезом фермента также может быть установлен по принципу обратной связи примером может служить влияние гуанина на образование ИМФ-дегидрогеназы в мутантных штаммах бактерий с подавленным синтезом ксантозин-5 -фос-фатаминазы. [c.310]


Смотреть страницы где упоминается термин Аллостерические превращения: [c.97]    [c.113]    [c.29]    [c.293]    [c.203]    [c.204]    [c.223]    [c.216]    [c.216]    [c.423]    [c.257]    [c.502]    [c.634]    [c.661]    [c.670]    [c.229]    [c.218]    [c.28]    [c.36]    [c.212]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.390 ]




ПОИСК







© 2025 chem21.info Реклама на сайте