Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрохимический скачки

    На поверхности контакта двух проводящих фаз электрохимической системы (различной химической природы, агрегатного состояния и типа проводимости) наблюдаются скачки потенциала. Сумма скачков потенциала на всех границах раздела фаз равновесной электрохимической системы называется электродвижущей силой (ЭДС) элемента или цепи. Она может быть непосредственно измерена как разность потенциалов фаз, находящихся на концах цепи. Для электрохимических систем характерны три основные типа скачков потенциала скачки потенциала металл — раствор, раствор — раствор и металл — металл. [c.280]


    Электродный потенциал определяется скачком потенциала на границе металл — раствор, а э. д. с. электрохимической системы представляет собой разность двух таких скачков потенциала. [c.213]

    Электродный потенциал. На границе двух фаз, содержащих заряженные компоненты (ионы, электроны), возникает межфазный потенциал а) на границе металл — раствор (электродный потенциал) б) на границе двух различных металлов (контактный потенциал) в) на границе металл — газ (контактный потенциал второго рода) г) на границе двух растворов, различающихся природой или концентрацией (диффузионный потенциал). Появление скачка потенциала на границе раздела фаз является следствием стремления системы к термодинамическому равновесию. При изучении электрохимических систем и реакций решающую роль играет скачок потенциала на границе раздела фаз металл — раствор, т. е. электродный потенциал. Измерение абсолютного значения электродного потенциала экспериментально неосуществимо. При практическом измерении ЭДС гальванического элемента потенциал одного из электродов условно принят за нуль. Международным эталоном сравнения электродных потенциалов является стандартный водородный электрод — платиновая пластинка, покрытая платиновой чернью, насыщенная газообразным водородом под давлением в 0,1 мПа и опущенная в раствор, в котором активность ионов водорода равна [c.124]

    Можно говорить лишь об эффективном или кажущемся электродном потенциале. Эквивалентную схему электролитической ячейки можно представить в виде очень большого числа сходящихся в общих узлах (аноде и катоде) элементарных параллельных цепей (рис. 1), включающих два электрохимических скачка потенциала и омическое сопротивление.. [c.431]

    Скачки потенциала могут возникать на границе раздела любых двух фаз, хотя механизм их образования в каждом случае необязательно одинаков и зависит от природы граничащих фаз, В электрохимической системе (рис. 7) можно найти  [c.30]

    Так как в реальном процессе переноса элементарного заряда из одной фазы в другую химическая и электрическая работы совершаются одновременно, то определить можно лишь общий энергетический эффект, отвечающий изменению электрохимического потенциала, но не отдельные его слагаемые. Поэтому найти экспериментально абсолютную разность электрических потенциалов (или скачок потенциала между двумя разными фазами) до сих пор не удалось. Э.д.с. электрохимической системы Е, напротив, можно непосредственно измерить она л.олжна, следовательно, отвечать разности потенциалов между двумя точками, лежащими в одной и той же фазе. Этими точками (см. рис. 7) могут быть точки Ь н д, находящиеся в одном н том же металле, или точки а и г, расположенные в вакууме вблизи поверхности металла. На рис, 7 изображена правильно разомкнутая электрохимическая цепь, на двух концах которой находится один и тот же металл. Если считать э,д.с. положительной величиной, то положительное электричество [c.30]


    Из (7.68) при учете выражений для электрохимического, химического и гальвани-потенциалов (67), (36) и (75) следует, что скачок потенциала между мембраной и раствором определяется уравнением [c.174]

    Роли скачка потенциала на стыке двух металлов в появлении э. д. с. теория не учитывает. Эти представления химической теории, как уже известно, не отвечают действительности, и э. д. с. электрохимической системы слагается из трех скачков потенциала. [c.213]

    Характер связи между э. д. с. и отдельными скачками потенциала можно выяснить на примере электрохимической системы, состоящей пз двух металлов, опущенных в растворы их токопроводящих соединений  [c.213]

    Было предположено, что энергию активации электрохимических реакций можно разложить на химическое и электрическое слагаемые. Первое из них отвечает тому случаю, когда скачок потенциала между металлом и раствором ( mil) равен нулю его можно обозначить через Uq. Второе слагаемое отвечает изменению энергии активации вследствие создания электрического поля в двойном слое за счет появления скачка потенциала g MiL это слагаемое [c.348]

    Еще более эффективен адсорбционно-электрохимический механизм пассивирования, установленный Эршлером, Б. Н. Кабановым, Я. М. Колотыркиным и др. Справедливость этого механизма подтверждается, напрнмер, данными по растворению платины. Скорость ее растворения в соляной кислоте при постоянном потенциале экспоненциально зависит от поверхностной концентрации кислорода. Чтобы скорость растворения упала в четыре раза, достаточно посадить на электрод количество кислорода, способное покрыть около 4% его видимой поверхности. Следующая такая же порция кислорода уменьшает скорость растворения еще в четыре раза, т. е. в шестнадцать раз по сравнению с первоначальной величиной, новые 4% доводят ее до /б4 от начального значения и т. д. вплоть до практически полного прекращения растворения платины. Подобная экспоненциальная зависимость объясняется Эршлером вытеснением из двойного слоя адсорбированными атомами кислорода (играющими роль отрицательного конца диполя металл — кислород) эквивалентного числа адсорбированных анионов. Уменьшение числа анионов в двойном слое соответственно снижает ионный скачок потенциала при сохранении неизменной общей разности потенциалов между металлом и раствором. Это должно привести, согласно законам электрохимической кинетики, к экспоненциальному снижению скорости ионизации, т. е. к такому же уменьшению скорости растворения металла, что и наблюдается на опыте. [c.484]

    При объемных методах анализа во многих случаях невозможно подобрать индикатор, как, например, при титровании темных окрашенных или мутных растворов. Поэтому помимо методов титрования в присутствии индикаторов нашли применение и электрохимические методы титрования. Методы эти просты в исполнении и более объективны, так как конечная точка титрования определяется электрометрически. Точка эквивалентности определяется по скачку потенциала электрода, погруженного в испытуемый раствор. [c.147]

    Основные электрохимические явления — это процессы, протекающие на границах различных фаз. Работа электрохимического элемента и его электродвижущая сила — это лишь суммарное проявление совокупности процессов, совершающихся на границах фаз, поэтому изучению молекулярных процессов на границах фаз, являющихся причиной возникновения на этих границах скачков потенциалов и, следовательно э.д.с., в теоретической электрохимии уделяется основное внимание. Однако отдельные скачки потенциала обычно нельзя измерить измеряются лишь электродвижущие силы. [c.519]

    Электрохимическая реакция является суммой отдельных электродных реакций, каждая из которых обусловливает скачок потенциала на границе металл — раствор. [c.292]

    Уравнения (386) и (387) справедливы для любого окислительновосстановительного электрода и показывают зависимость скоростей электродных процессов от потенциала и строения двойного электрического слоя. При этом видно, что на скорость электродного процесса оказывает влияние только часть общего скачка потенциала, приходящаяся на плотную часть двойного электрического слоя (т. е. на зону, где протекает электрохимическая реакция), гр = (Ум.)обр + А1/ — г] . [c.201]

    Переход энергии химической реакции в энергию электрического тока и обратно происходит в электрохимических системах, состоящих из электролитов и электродов. Электрод — система, состоящая из двух фаз, одна из которых является электролитом, а др5 гая — металлом или полупроводником. Между, компонентами фаз происходит реакция (электродный процесс), сопровождающаяся переходом электрических зарядов из одной фазы в другую и возникновением скачка потенциала на границе их раздела. [c.454]

    Электрической характеристикой электрода является потенциал, а электрохимической цепи —электродвижущая сила (э. д. с.), равная алгебраической сумме скачков потенциала, возникающих на границах раздела фаз, входящих в состав цепи. [c.468]


    Электрохимическая цепь представляет собой систему, состоящую из различных фаз, содержащих заряженные компоненты — ионы и электроны (рис. 169). На границах раздела фаз происходит переход заряженных частиц из одной фазы в другую, что объясняется стремлением системы к термодинамическому равновесию. При этом на границах раздела фаз возникают скачки потенциала. Э. д. с. цепи определяется как суммарный результат всех процессов, происходящих на границах раздела фаз. [c.468]

    Потенциал нулевого заряда является важной электрохимической характеристикой электродов. При потенциалах, близких к п. н. з., некоторые свойства металлов достигают предельных значений велика адсорбция ПАВ, максимальна твердость, минимальна смачиваемость растворами электролитов и др. Исследования двойного электрического слоя позволили более широко рассмотреть вопрос о природе скачков потенциала на границе раздела фаз. Скачок потенциала на границе металл — раствор обусловлен в основном переходом заряженных частиц из одной фазы в другую. Однако существенную роль здесь играет также адсорбция ионов и полярных молекул. Гальвани-по-тенциал между фазами L и М можно рассматривать как сумму трех разнородных потенциалов  [c.475]

    Скачок потенциала на границе раздела фаз может быть равен нулю только тогда, когда g i, g2 и ga компенсируют друг друга. В настоящее время нет прямых экспериментальных и расчетных методов определения величин отдельных скачков потенциала на границе раздела фаз. Поэтому вопрос об условиях, при которых скачок потенциала обращается в нуль (так называемый абсолютный нуль потенциала), остается пока не разрешенным. Однако для решения электрохимических задач знание отдельных скачков потенциалов не обязательно. Достаточно пользоваться значениями электродных потенциалов, выраженными в условной, например, водородной шкале. [c.476]

    Рис, 76. Скачки потенциала в электрохимическом элементе на границе металл — раствор электролита и металл — металл [c.273]

    Э. д. с. электрохимического элемента, состоящего из двух металлов, погруженных в раствор электролита, складывается из трех скачков потенциала (рис, 76, а)  [c.273]

    Отдельные скачки потенциала (гальвани-потенциалы) и 4>м,м, уравнении (VII, 117) не поддаются экспериментальному определению. Поэтому за условную величину электродного потенциала принимают э. д. с. элемента, в котором электродом сравнения служит один н тот же стандартный электрод М (рис. 76, б). Тогда условные электродные потенциалы металлов и М, определяются из электрохимических цепей [c.273]

    Электродный потенциал, представляющий собой скачок потенциала на фазовой границе металл - электролит, определяет характер и скорость электрохимических процессов. Этот скачок пространственно локализован в области двойного электролитического слоя на границе металл - электролит, [c.129]

    В области к.т.т. происходит замена одной электрохимической (индикаторной) реакции на другую, что сопровождается скачком потенциала. [c.27]

    Анализ этого уравнения показывает, что при одинаковой степени оттитрованности раствора, одних и тех же начальных активностях реагирующих веществ и прочих равных условиях скачок потенциала тем больше, чем больше разность стандартных (реальных) потенциалов индикаторных электрохимических реакций до и за т.э. Естественно, при меньшей степени оттитрованности и большей начальной активности тех же реагирующих веществ Л Е также будет возрастать за счет уменьшения второго члена в правой части уравнения. Напротив, при одной и той же степени оттитрованности, но меньших начальных активностях этих реагирующих компонентов титруемое вещество остается до т.э, в меньшей концентрации и эа т.э, появляется титрант также в меньшей концентрации. Поэтому множитель при г будет больше [c.60]

    Интенсивность и направленность окислительных процессов, в том числе и биогенных, определяется, главным образом, электродным потенциалом (ЭП) минерала и окислительно-восстановительным потенциалом (ОВП) электролита (раствора). Электродный потенциал минерала (скачок потенциала на границе минерал-электролит) прямо пропорционален работе по выходу электрона из кристаллической структуры минерала и является мерой степени его окисляемости. Изучение ЭП минералов позволяет получить так называемые электрохимические ряды, в которых минералы ра спола-гаются в соответствии с величиной ЭП. Эти ряды в общем соответствуют рядам устойчивости минералов при их окислении и, следовательно, могут служить критерием поведения в природном процессе. [c.111]

    Как ранее было сказано, данные расчетов кривой титрования перманганатом (см. табл. 21) не являются реальными, так как система MnO jм.n электрохимически необратима в отличие от системы Ре /Ре . И если изменение потенциала, когда железо оттитровано до 99,97о, практически совпадает с теоретически рассчитанным, то теоретически рассчитанные потенциалы для точки эквивалентности и для последующих точек не соответствуют тем значениям, которые наблюдаются в реальных условиях. Реальный скачок потенциала (рис. 58) имеет намного меньшее значение (АВ), чем теоретически рассчитанное. Поэтому, если титрование завершить по достижении теоретически рассчитанной величины потенциала (С) точки эквивалентности, то раствор соли желе-за(П) будет перетитрован (точка О). Фактически потенциал точки эквивалентности не отвечает величине 1,387 в (точка С), а находится в пределах АВ и имеет меньшее значение. Несмотря на это, скачок потенциала достаточно велик, и конечная точка титрования практически отвечает точке эквивалентности. То же самое можно сказать о титровании железа(II) бихроматом, так как система Ст О тоже необратима. Поэтому следует всегда с огто-рожнсстью пользоваться термодинамическими значениями стандартных потенциалов ири расчете кривых титрования. Это особенно важно для правильного выбора индикаторов. [c.365]

    Это классическое определение, берущее начало от В. А. Кистя-ковского и отвечающее принципам классификации наук, сформулированным Ф. Энгельсом, сохраняется как основа нового определения. Оно дополняется, однако, характеристикой признаков, присущих электрохимическим явлениям электрохимия изучает взаимное превращение химической и электрической форм энергии, системы, в которых это превращение соверш.ается (в равновесии и в динамике), а также все гетерогенные явления и процессы, равновесие и скорость которых определяются скачком потенциала между граничащими фазами и связаны с переносом зарядов через границы фаз в виде расчлененных актов окисления и восстановления. [c.9]

    Теперь расемотрим, какие скачки потенциала имеются в электрохимической системе и какова их связь с э.д.с., т. е. экспериментально измеряемой величиной обратимого напряжения. [c.30]

    Следовательно, э.д.с. электрохимической системы состоит из четырех скачков потенциала гальвани-потенциала между двумя металлами, двух нернстовских потенциалов и гальвани-потенциала на границе раствор — раствор. Во многих электрохимических системах потенциал Яь.д.г или отсутствует, или его можно свести до минимума. Он не является, таким образом, неизбежным следствием природы электрохимической сист( мы и обязательным слагае-.мым ее э.д.с. Поэтому э.д.с. обычно вы[>ажают как сумму трех галь-вани-скачков потенциала  [c.31]

    Разложение э.д.с. на отдельные скачки потенциала дает дополнительные сведения о природе электрохимических систем. В то же время основное уравнение (97), передающее связь э.д.с. со скачками потенцпала, нельзя считать удовлетворительным. Реально измеряемая величина э.д.с. выражается здесь как сумма гальвани-потенциалов, т. е. потенциалов, отвечающих двух точкам, находя- [c.32]

    Значение электродного потенциала в общем случае не совпадает ни с нернстовскнм потенциалом, ни с разностью между нернстовскими потенциалами металла и электрода Н+ Н2 Р1, так как включает в себя еще и потенциал между данным металлом и платиной. Понятие об электродном потенциале поэтому сложнее, чем понятие о скачке потенциала между электродом и раствором, и не может быть сведено к нему. Так называемая физическая теория электрохимических систем, сформулированная Вольтой еще в начале прошлого века, отводила особое место контакту между двумя разнородными металлами. По этой теории э. д с. электрохимической системы считается равной вольта-потенциалу между двумя разнородными металлами, а скачок вольта-потенциала между металлом н раствором принимается равным нулю. Возникновение тока в электрохимической системе объясняется при этом следующим образом. Если привести в непосредственное соприкосновение два различных металла (рис. 10.1, а), то э.д.с. не возникнет, так как [c.211]

    Вместе с тем в химической теории предполагается, что э. д. с. электрохимической системы слагается только из двух скачков потенциала, возникающих на тех границах раздела, где протекают тоготобразующие химические реакции, т. е. на границах раздела электрод — электролит. При этом электродные потенциалы отождествляются со скачками потенциалов между электродом и раствором, а э. д. с. — с разностью этих скачков  [c.212]

    Электродвижушая сила электрохимического элемента слагается из разностей потенциалов между различными проводни-клми разомкнутой цепи в местах их соприкосновения (эти раз-ьюсти потенциалов называются также скачками потенциала). При соприкосновении проводников первого рода возникает скачок потенциала, называемый гальвани-потенциалом (см. стр. 533). [c.519]

    Электрод представляет собой электрохимическую систему, состоящую минимум из двух фаз. На границе раздела фаз протекает элек -родный процесс —реакция между компонентами фаз, в результате которой происходит переход электрических зарядов из одной фазы в другую. Каждая фаза при этом приобретает электрический заряд, и на границе их раздела создается двойной электрический слой, которому соответствует скачок потенциала. [c.466]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —Mi (точки 1—2) Mi —Мц (точки 3—4) Мц —раствор L (точки 5-—б) раствор L —Mi (точки 7—8) Mi —вакуум (точки 9—10), где М —металл. Потенциал х. отвечающий работе переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости к поверхности фазы, называется поверхностным. В рассматриваемой. цепи поверхностные потенциалы возникают между точками / и 2, а также 9 и 10. Разность внутренних потенциалов соседних фаз называется гальвани-пот нциалом. В цепи, представленной на рис. 169, гальвани-потенциалы возникают на границах фаз точки 3—4-, точки 5—6 точки 7—S. Э. д. с. этой цепи представляет собой сумму скачков потенциалов  [c.469]

    Скачки потенциала между фазами не поддаются экспериментальному определению. Поскольку э. д. с. электрохимической системы может быть легко измерена, то принято электродный потенциал считать равным э. д. с. цепи, составленной из водородного (слева) и данного электрода (справа). Водородный электрод при этом взят в стандартном состоянии (ан+ = 1) парциальное давление газа равно нормальному атмосферному давлению (1,013 10 Па) и его потенциал при любой температуре условно принят нулю. Электродные потенциалы при этом выражают в условной водородной шкале. Э. д. с. правильно разомкнутой цепи M Pt, HalLjM соответствует электродному потенциалу системы L M, для которого примем обозначение фьм  [c.469]

    Величину энергии активации электрохимической реакции можно разложить на две составляющие. Одна из них Е отвечает тому случаю, когда скачок потенциала между раствором и металлом равен нулю. Вторая А соответствует изменению энергии активации за счет влияния электрического поля при заряжении электрода до потенциала ф. Реакция катодного восстановления Ох + ге" Рес1 протекает при отрицательном заряде электрода, что способствует ускорению прямой реакции и замедлению обратной. Энергия активации прямой реакции уменьшается, а обратной увеличивается по сравнению с ее значением при потенциале, равном нулю. Поэтому [c.506]

    Влияние г >1-потенциала проявляется, во-первых, на величине энергии активации стадии разряда — ионизации. В плотном двойном электрическом слое скачок потенциала равен <р — Поскольку электрохимическая реакция протекает в непосредственной близости от поверхности электрода, на ее энергию активации влияет не весь скачок потенциала, а только его часть ф — ilJi. [c.389]


Смотреть страницы где упоминается термин Потенциал электрохимический скачки: [c.15]    [c.28]    [c.30]    [c.212]    [c.353]    [c.242]   
Теоретическая электрохимия Издание 2 (1969) -- [ c.194 , c.204 , c.205 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электрохимический

Скачки потенциала

Скачок потенциала



© 2025 chem21.info Реклама на сайте