Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поляризация концентрационно-диффузионная

    Концентрационно-диффузионная поляризация. При разряде на катоде из раствора непрерывно уходят катионы, в результате чего катодный потенциал становится более отрицательным. Чтобы сила тока не уменьшалась, требуется наложение на катод все большего и большего потенциала. Поддержание потенциала [c.329]

    До сих пор мы рассматривали работу элемента, у которого величина поверхности электродов была одинакова. Поскольку это не всегда имеет место, рассмотрим элемент, образованный электродами с различной величиной поверхности. Пусть, например, поверхность катода будет вдвое меньше поверхности анода. Такой случай, не осложненный концентрационной поляризацией и диффузионной- кинетикой, показан на рис. 150. [c.563]


    Следует, однако, отметить, что определение величины перенапряжения катода в процессе восстановления металлов с образованием сплава представляет значительные трудности. Особенно это относится к электроосаждению сплавов, образование которых становится возможным в результате сближения потенциалов выделения компонентов за счет концентрационной поляризации (предельный диффузионный ток по ионам электроположительного металла). Совершенно очевидно, что в этом случае неприменим метод быстрого снятия поляризационных кривых [35], так как в нем устраняется именно этот фактор — концентрационная поляризация, который обеспечивает условия совместного разряда. [c.48]

    Ч. ДИФФУЗИОННАЯ КИНЕТИКА И КОНЦЕНТРАЦИОННАЯ ПОЛЯРИЗАЦИЯ [c.204]

    Замедленность диффузионной стадии электрохимического процесса приводит, как это отмечалось выше (см. с. 196), к возникновению концентрационной поляризации, значение которой для неконцентрированных растворов можно представить уравнением, соответствующим э. д. с. концентрационного элемента  [c.211]

    Концентрационная поляризация всегда имеет место при электрохимических электродных процессах, увеличивая значение поляризации данного процесса на меньшую или большую величину (АУ > ДУэ = х), а часто (при высоких, близких к 1д плотностях тока) определяет суммарную скорость процесса диффузионный контроль процесса). [c.212]

    Эффективная энергия активации при концентрационной поляризации, т. е. при диффузионном контроле процесса, представляет собой энергию активации вязкого течения раствора, которая для разбавленных водных растворов близка к энергии активации вязкости воды (табл. 50). [c.353]

    Поляризацию обоих видов обычно можно уменьшить теми или другими приемами, осуществляя, как говорят, деполяризацию. Концентрационную поляризацию можно в значительной степени уменьшить путем достаточно энергичного перемешивания раствора. Впрочем, полного уничтожения ее достичь не удается вследствие образования на электродах диффузионного слоя. Химическую поляризацию можно ослабить прибавлением веществ, активно взаимодействующих с веществами, ее вызывающими. Так, для ослабления поляризации, обусловленной выделением на катоде водорода, деполяризаторами могут служить различные окислители, а для ослабления поляризации, создаваемой выделением на аноде кислорода, деполяризаторами могут быть соответствующие восстановители. [c.448]

    КОНЦЕНТРАЦИОННАЯ ПОЛЯРИЗАЦИЯ (ДИФФУЗИОННОЕ ПЕРЕНАПРЯЖЕНИЕ) [c.51]


    Уравнение (4) называют уравнением Стерна—Гири. Если катодный процесс контролируется концентрационной поляризацией, как это имеет место при коррозии с кислородной деполяризацией, то коррозионный ток равен предельному диффузионному току (рис. П.2). Этот случай отвечает большим или бесконечно большим значениям в уравнении (4). Следовательно, когда процесс контролируется концентрационной поляризацией такого рода, уравнение (4) приобретает вид  [c.400]

    Диффузионная.кинетика и концентрационная поляризация [c.25]

    Скорость электрохимического процесса в обратимой окислительновосстановительной системе зависит от соотношения концентраций окисленной и восстановленной форм ионов. Если наиболее замедленная стадия процесса электролиза имеет диффузионную природу (концентрационная поляризация), то зависимость скорости (силы или плотности тока) электролиза от состава исследуемой обратимой системы рассчитывается по уравнению [c.418]

    Если лимитирующими стадиями электродного процесса являются доставка реагентов к поверхности электрода и отвод продуктов реакции путем диффузии, то происходит изменение концентрации раствора электролита или самого электрода у поверхности раздела фаз по сравнению с концентрацией веществ внутри объема фаз. В таком случае поляризация называется концентрационной, а перенапряжение — диффузионным. При замедленности других стадий электродного процесса рассматривают перенапряжение этих стадий. [c.328]

    Величина Дф складывается из омического падения потенциала Афо = =2< Лф и обычного диффузионного потенциала, связанного с различной подвижностью катионов и анионов Дфд ф=(/+— )Дф. Если числа переноса катионов и анионов одинаковы, т. е. /+=/ =0,5, то Дфд ф=0 и Аф=Дф . Сравнив уравнения (32.9) и (30.5), можно видеть, что при разряде одновалентного катиона в отсутствие фона падение потенциала в диффузионном слое в точности равно концентрационной поляризации. В присутствии фонового электролита это положение нарушается, поскольку при добавлении фона падение потенциала [c.159]

    Соотношения для концентрационной поляризации (31.6) и (31.18), а также уравнения для поляризационных кривых (31.7) и (31.19) применимы и в условиях конвективной диффузии, если в них подставить выражение для предельного диффузионного тока, вытекающее из (34.3) при с =0  [c.170]

    Уравнение (51.7) лежит в основе так называемых релаксационных методов изучения кинетики быстрых электрохимических реакций. Основная идея релаксационных методов заключается в том, что при сокращении времени t между подачей импульса, выводящего систему из равновесия, и регистрацией состояния системы уменьшается концентрационная поляризация. В пределе при i- 0, когда скорость диффузионной стадии стремится к бесконечности, концентрационная [c.260]

    Таким образом, первое и второе основные уравнения диффузионной кинетики связывают ток и концентрационную поляризацию с распределением концентрации реагирующих веществ вблизи поверхности электрода. Чтобы найти это распределение, необходимо решить дифференциальное уравнение (или систему дифференциальных уравнений) вида [c.174]

    Потенциал полуволны цинка в среде 1 М КС1 равен— 1,0 в, а аммиакат цинка восстанавливается при потенциале полуволны— 1,43 в. Как уравнение Ильковича, так и уравнение полярографической волны выведено для случая обратимого процесса, когда металл, восстанавливающийся на ртутном капающем электроде, растворяется в ртути, образуя амальгаму. Восстановление происходит без перенапряжения, н единственной замедленной стадией при электродном процессе является диффузия ионов металла к поверхности электрода. В этом случае ртутный катод подвергается только концентрационной поляризации. Величина диффузионного тока прямо пропорциональна концентрации электровосстанавливающегося или электроокисляющегося вещества угловой коэффициент и ei/2 остаются постоянными величинами при изменении концентрации деполяризатора. [c.59]

    Когда ионы ртути разряжаются на чистой новерхности жидкой ртути, перенапряженпе имеет ничтожно малую величину. По данным старых работ, поляризация при плотности тока I = 0,01 а см достигает велич1шы порядка 1 мв [84, 85]. Но и эта небольшая поляризация объяснялась диффузионными явлениями, хотя на жидком электроде нри поляризации часто возникают интенсивные движения поверхности электрода, вызываюш ие перемешивание раствора л снижающие концентрационную поляризацию. Кроме того, движение поверхности способствует удалению с поверхности случайных загрязнений и делает поверхность еще более однородной [86]. [c.50]

    Концентрационная поляризация и диффузионный слой играют очень важную роль в формировании свойств мембранной системы. Можно сказать, что, хотя свойства самой мембраны и являются основополагающими, знания этих свойств еще недостаточно для того, чтобы определить выходные характеристики всей системы и управлять ходом электромемб-ранного процесса. В первую очередь это является следствием того, что при достаточно высоких плотностях тока мембранный процесс лимитируется переносом ионов через диффузионный слой. В этих условиях не только суммарный скачок потенциала, но и такое свойство, как специфическая селективность по отношению к одному из сортов конкурирующих противоионов, определяется параметрами обессоливаемого диффузионного слоя. Параметры диффузионного слоя зависят от конструкции мембранного аппарата и от скорости прокачивания раствора. Таким образом, становятся более понятными пути совершенствования электромембранных аппаратов для этого требуются мембраны с заранее заданными свойствами и конструкции каналов, обеспечивающие оптимальные параметры диффузионного слоя. В большинстве случаев оптимальным будет диффузионный слой минимальной толщины, и здесь очень важной оказывается возможность воздействовать на диффузионный слой не только чисто гидродинамическими приемами, но и использовать для этого сопряженные эффекты, такие как гравитационная конвекция и электроконвекция. Отметим также, что конечный результат будет зависеть еще и от того, таким образом протекает эволюция порции раствора, движущейся по мембранному каналу, в частности, от того, каким образом будут воздействовать продукты электромембранных реакций на ход процесса (установлено [17, 218], например, что сдвиг pH в камере обессоливания отрицательно влияет на характеристики процесса обессоливания происходит снижение выхода по току из-за участия в переносе электричества продуктов диссоциации воды, кроме того, ионы воды вызывают эффект депрессии потока противоионов соли, противоположный эффекту экзальтации). Такого рода эффекты, проявляющиеся при движении раствора по длине мембранного канала, изучает динамика электродиализа, однако этот раздел мембранной электрохимии уже выходит за рамки данной книги. [c.347]


    При окислительно-восстановительных процессах диффузионное неренапряжение обычно велико и часто составляет значительную, а иногда даже и основную долю всего смещения потенциала электрода под током. Поскольку роль концентрационного перенапряжения в редокси-процесоах уже обсуждалась ранее, здесь рассматриваются только химическое перенапряжение и активационная поляризация. При этом предполагается, что диффузионное перенапряжение или учтено, или устранено. [c.429]

    Таким образом, перемешивание электролита в одном из пространств ячейки, облегчая диффузионные процессы (в результате уменьшения толщины диффузионного слоя), одновременно снижает концентрационную поляризацию и катодного, и анодного процесса, т. е. вызывает одновременно и эффект неравномерной аэрации, и мотоэлектрический эффект, которые действуют в противоположных направлениях. Направление тока при этом, т. е. полярность электродов гальванической макропары, обусловлено преобладанием одного из этих эффектов. Для менее термодинамически устойчивых металлов (Fe, Zn и др.) преобладает эффект неравномерной аэрации, а для более термодинамически устойчивых металлов (серебра, меди и их сплавов, иногда свинца) — мотоэлектрический эффект. Следует, забегая несколько вперед, отметить, что у электродов макропары неравномерной аэрации или мотоэлектрического эффекта за счет работы микропар в большей или меньшей степени сохраняются функции — у катода анодные, а у анода катодные (см. с. 289).  [c.247]

    Концентрационная поляризация, в частности, очень невелика вследствие большой диффузионной подвижности и скорости миграции водородных ионов, перемешиваш1я раствора у катода выделяющимся газообразным водородом и др. Работами [c.41]

    Порошок свинца электролитически легко получают из щелочных плюмбитных растворов, для которых так же, как и для цинкатных растворов, характерна преимущественная концентрационная поляризация и хорошо выраженная пропорциональная зависимость предельного диффузионного тока от концентрации свинца в растворе. [c.328]

    По мере возрастания потенциала электрода число частиц, реагирующих в единицу времени, возрастает, при этом растет сила тока в цепи, а их концентрация в приэлектродном слое убывает по сравнению с концентрацией в растворе. Возникает градиент концентрации, являющийся двил<ущей силой диффузионного переноса частиц из объема раствора к поверхности электрода. При достаточном увеличении потенциала наступает момент, когда все частицы, поступающие к электроду за счет диффузии, немедленно разряжаются, так что их концентрация в приэлектродном слое становится весьма мало отличной от нуля. Начиная с этого момента, дальнейшее увеличение силы тока становится невозможным. Электрод приходит в состояние так называемой концентрационной поляризации. [c.274]

    Верхний горизонтальнЕ й участок кривой соответствует достижению предельного диффузионного тока. Если в растворе присутствует несколько деполяризаторов, то получаемая вольтамнерная кривая содержит ряд полярографических волн , расположенных в порядке, определяемом природой деполяризаторов. При соблюдении ряда условий (введение в исследуемый раствор фонового электролита и поверхностно-активных веществ) поступление деполяризатора к поверхности электрода обусловлено только диффузией, скорость которой при прочих равных условиях зависит от градиента концентраций деполяризатора у поверхности электрода и во всей массе раствора. При достижении некоторого потенциала предельного тока число частиц, вступающих в электрохимическую реакцию в единицу времени, становится равным их числу, диффундирующему из раствора к поверхности электрода. Достигается состояние концентрационной поляризации, при которой величина тока в ячейке остается постоянной. Как сказано выше, такой ток называется предельным диффузионным током. Зависимость величины диффузионного тока от концентрации деполяризатора для ртутного капающего электрода выражается уравнением Ильковича [c.154]

    Поскольку этот метод о собенно широко применяется в иодо-(Метрии, рассмотрим следующий пример. При титровании раствора и в KI на катоде происходит восстановление Ь до а на аноде в эквивалентном количестве 1 окисляется в Ь. Поэтому концентрационное соотношение b/I остается в растворе неизменным, чему способствует перемешивание раствора. Только в непосредственной близости к электродам происходит обеднение раствора и дополнительная подача деполяризатора к электродам за счет диффузии. Диффузионная поляризация из-за небольшой силы тока крайне мала, и ею можно пренебречь. Таким образом, оба электрода почти идеально деполяризованы, и возникает ток. [c.299]

    Величина Аф складывается из омического падения потенциала Афо = = 2/ Аф и обычного диффузионного потенциала, связанного с различ ной подвижностью катионов и анионов фд ф = (/ — 1 ) Аф. Если числа переноса катионов и анионов одинаковы, т. е. /+ = / = 0,5, то Фдиф = О и Дф = Афом. Сравнив уравнения (32.9) и (30.5), можно видеть, что в частном случае разряда одновалентного катиона в отсутствие фона падение потенциала в диффузионном слое в точности равно концентрационной поляризации. В присутствии фонового электролита это положение нарушается, поскольку при добавлении фона падение потенциала в диффузионном слое уменьшается, тогда как концентрационная поляризация остается той же. [c.170]


Смотреть страницы где упоминается термин Поляризация концентрационно-диффузионная: [c.348]    [c.32]    [c.562]    [c.533]    [c.297]    [c.396]    [c.25]    [c.268]    [c.160]    [c.260]    [c.276]    [c.160]    [c.260]   
Курс теоретической электрохимии (1951) -- [ c.328 , c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Концентрационная поляризаци

Поляризация диффузионная

Поляризация концентрационная



© 2025 chem21.info Реклама на сайте