Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны механические

    Причины возникновения потенциала асимметрии неясны они, бесспорно, включают такие факторы, как различие напряжений на внутренней и внешней поверхностях, устанавливающееся при изготовлении мембраны, механические и химические воздействия или загрязнения внешней поверхности в процессе использования. Чтобы устранить влияние потенциала асимметрии на результаты измерения pH, проводят систематическую калибровку электрода по стандартному буферному раствору с известным pH. [c.429]


    Для уменьшения влияния концентрационной поляризации предложено [102] турбулизировать раствор у поверхности мембраны (механическое перемешивание или перекачивание раствора, использование турбулизующих вставок и т. д.). Однако в ряде случаев, например для аппаратов типа фильтр-пресс , этот путь, по-суще-ству, непригоден, так как приводит к резкому повышению расхода энергии на циркуляцию раствора. [c.69]

    Скорость массопереноса, характеризуемая коэффициентами диффузии газов в конденсированных средах, невелика и обычно на несколько порядков меньше, чем в объемной газовой фазе или при свободномолекулярном течении. Поэтому для получения мембран удовлетворительной проницаемости стремятся уменьшить толщину плотного слоя, который принято называть селективным или диффузионным. Наиболее перспективны асимметричные и двухслойные мембраны, протяженность селективного слоя которых порядка м. Механическая прочность и другие технологические свойства мембраны обеспечены пористым слоем подложки толщиной 30—500 мкм, диффузионное сопротивление которого незначительно. [c.71]

    При выборе мембран для работы в условиях радиоактивного облучения следует учитывать влияние радиации на их свойства — проницаемость, механическую прочность и время жизни . Так, мембраны из силиконового каучука стабильно работают в этих условиях только до величины дозы порядка 10 рад [99]. [c.316]

    Полученная подобным образом мембрана имеет анизотропную структуру — тонкий (примерно 0,25—0,5 мкм) поверхностный слой на микропористой подложке (примерно 100—200 мкм). Основная масса с крупнопористой структурой не представляет собой селективного барьера, а обеспечивает лишь механическую прочность мембраны и служит как бы подложкой для поверхностного слоя, связанной с ним в одно [c.48]

    Вместе с тем, наряду с очевидными достоинствами эти мембраны имеют ряд существенных недостатков, которые ограничивают область их применения в химической технологии нестойкость (табл. 11,5) в щелочных и кислотных средах необратимое ухудшение основных характеристик со временем малая механическая прочность необходимость хранения и транспортирования во влажном состоянии, поскольку высушивание мембран приводит к необратимой потере проницаемости. Много интересных разработок выполнено и по получению ультра- [c.59]

    Отрицательное влияние гидролиза лучше пояснить на примере асимметричной ацетатцеллюлозной мембраны, применяемой для опреснения воды обратным осмосом. В данном случае происходит катализируемый кислотой гидролиз звеньев р-глюкозида, связывающих звенья ангидро-глюкозы в полимерную цепь. Происходящее уменьшение молекулярной массы приводит, во-первых, к постепенному ухудшению механических свойств и к неизбежному внезапному прорыву мембраны. Гидролиз, катализируемый основанием, вызывает постепенное деацилирование, по многим каналам влияющее на проницаемость, селективность и механические свойства. Если гидролиз идет быстро, проницаемость может возрастать благодаря увеличению числа гидрофильных гидроксильных групп. Если гидролиз идет медленно, увеличение гидрофильности может быть незаметным из-за увеличения сжатия и последующего снижения проницаемости вследствие того, что гидролизованный сополимер легче пластифицируется водой. Селективность падает из-за уменьшения числа гидрофобных ацетатных групп, служащих поперечными мостиками между соседними звеньями, а также вследствие того, что за большими ацетильными группами остаются пустоты, которые сейчас же заполняются сольватирующей ионы водой. [c.71]


    Кристалличность. Знание степени кристалличности важно для оценки проницаемости и селективности таких полимерных мембран, как сплошные пленки (включая тонкие поверхностные слои асимметричных ацетатцеллюлозных мембран), диализные мембраны и мембраны для разделения газов. Кроме влияния на перенос вещества кристалличность воздействует на различные параметры, влияющие на химические и механические свойства, что приводит к изменению свойств мембраны со временем. [c.71]

    Соотношение между кристаллической и аморфной фазами оказывает большое влияние на механические свойства полимерных мембран, а также на такую важную рабочую характеристику мембраны, как проницаемость. Конечно, отдельные кристаллиты являются очень жест- [c.71]

    Другим важнейшим достоинством динамических мембран является высокая проницаемость, достигающая сотен литров с квадратного метра в час, что значительно больше проницаемости широко распространенных ацетатцеллюлозных мембран. Следует также отметить, что срок службы динамических мембран практически неограничен. Мембрана обладает полупроницаемыми свойствами все время, пока в разделяемом растворе имеются примеси дисперсного материала. В случае небольшого механического повреждения возможно самовосстановление [c.84]

    В действительности замедленное, но непрерывное снижение О наблюдается в течение всего срока службы мембраны, который и определяется именно этим показателем, но не механической прочностью мембраны. Анализ полученных данных [153] показал, что в качестве критерия, характеризующего вязкоэластичные свойства мембраны, а следовательно, и срок ее службы, можно принять площадь петли гистерезиса (рис. 1У-5, а, б), описываемой кривой С = 1(Р) при последовательном увеличении Р от нуля до некоторого значения, а затем изменение давления в обратной последовательности. [c.177]

    Если в результате работы все же происходит загрязнение мембран, следует периодически проводить их очистку. Простейший способ очистки— это сбрасывание давления на несколько минут и промывание аппарата сильным потоком воды. При этом загрязнения отслаиваются от мембраны и вымываются из аппарата. Больший эффект дает промывка мембран слабым раствором соляной кислоты (pH 3) с последующей окончательной промывкой сильным потоком воды. Еще более эффективна, если только позволяет конструкция аппарата, механическая очист- [c.296]

    Недостаточная изученность явлений переноса через мембрану и трудность подбора материала мембраны (пока он ведется в большей степени экспериментально) являются основными сдерживающими факторами интенсивного внедрения этого способа разделения. Кроме того, сильная зависимость долговечности мембран от механических нагрузок, температуры, примесей в значительной степени ограничивает область их применения. Это особенно относится к разделению жидких смесей, где труднее обеспечить однородность потока. [c.86]

    При одинаковом составе растворов следует ожидать равенства Фс и фс. Однако поверхности стеклянной мембраны различны по своим свойствам, обусловленным главным образом механической, термической обработкой в процессе изготовления электрода. Разность фс и фс в этих условиях называется потенциалом асимметрии стеклянного электрода, является его индивидуальной характеристикой и входит в величину стандартного потенциала стеклянного электрода. [c.486]

    Эта группа приборов основана на косвенных методах измерения давления под действием разности атмосферного и рабочего остаточного давлений деформируется чувствительный элемент вакуумметра (спиральная трубка типа пружины Бурдона, мембрана, сильфон), а величина деформации механическим или электрическим путем передается на шкальную систему отсчета. [c.35]

    Процессы мембранного разделения газовых смесей основаны на различной проницаемости компонентов газов через жесткую селективно-проницаемую перегородку, разделяющую массообменный аппарат на две рабочие зоны. Селективно-проницаемая перегородка состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность. [c.74]

    Применяемые для разделения мембраны должны обладать хо-рощей селективностью (разделяющей способностью), высокой проницаемостью (удельной производительностью), стойкостью к действию среды, механической прочностью и т. д. [c.239]

    В настоящее время разработано большое число ионселективных электродов. В качестве мембран в этих электродах используют различные твердые и жидкие иониты, монокристаллы солей, гетерогенные (осадочные) мембраны. При изготовлении последних для придания мембранам нужной механической прочности применяют инертные связующие материалы, роль которых состоит в создании матрицы для закрепления частиц ионообменного вещества. Помимо указанных, при помощи ионселективных электродов можно определять ионы Са +, (Са ++Мя =+), 2п +, РЬ +, Ьа +, С1-, Вг-, 1-, 5 -, Р-, СЮ , МОз и т. д. [c.137]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    При использовании методов второй группы газ после нагрева ударной волной охлаждается волной разрежения, затем проводится его химический анализ. Для образования интенсивной волны разрежения в торце камеры высокого давления устанавливается большой вакуумный объем, отделенный от камеры второй мембраной. Сначала разрывается первая мембрана, а затем через определенный интервал времени механически устраняется вторая, так что вдоль ударной трубы распространяется сильная волна разрежения. [c.301]

    Разрывные предохранительные мембраны с канавками в рисками имеют как плоскую, так и куполообразную форму. Канавки и риски наносятся на мембраны механической обработкой или втавповвой с целью подуче-ния низкого разрывного давления в случаях, когда его невозможно добиться применением других конструкций. [c.19]

    Механические маностаты. В приборах с механическим регулированием давления основным элементом является либо упругий резиновый конус (кольцо), либо резиновая мембрана. Механические маностаты лyжaiт для фубой регулировки давления. [c.468]

    Как показано в последние годы, при наличии разности тектрохимических потенциалов Н+ на сопрягающей мем-ране может совершаться не только химическая работа интез АТФ), но и осмотическая работа при транспорте азличных соединений через мембраны, механическая ра-ота (движение жгутиков у бактерий), может выделяться епло (теплорегулягорное разобщение окислительного фэс-юрилирования). [c.29]

    Эксплуатация ИСПТ с полимерными ионоселективными мембранами часто затрудняется из-за низкой адгезии мембраны к поверхности сенсора. В обычных ИСЭ мембрана механически укрепляется на одном конце трубки и вопрос об адгезии вообще не возникает. Напротив, в ИСПТ мембрана наносится на поверхность затвора сенсора и должна удерживаться на этой поверхности в силу физической или химической адгезии. В различных лабораториях по-разному пытались решить эту проблему, например путем нанесения мембраны на большую площадь сенсора или с помощью поливинилхлоридного якорного кольца, укрепленного в герметике по периметру затвора [23], или посредством изменения химического состава мембраны даже в ущерб ее электрохимическим характеристикам. [c.406]

    Мембраны должны быть защищены снаружи от механических повреждений. Для защиты людей от травм и аппаратов и трубопроводов от повреждений, возможных при разрыве мембран, перед ними на расстоянни [c.89]

    Наименьшей ячейкой мембранного массообменного устройства является мембранный элемент, состоящий из напбрного и дренажного каналов, разделенных селективно-проницаемой перегородкой. Тип элемента определяется геометрией разделяющей поверхности (плоские, рулонные, трубчатые, волоконные) и организацией движения потоков газа (прямо-и противоточные, с перекрестным током, с рециклом разделяемой смеси и т. д.). Напорный канал элемента плоского типа образован селективно-проницаемыми стенками, ориентированными горизонтально или вертикально. В элементах трубчатого типа напорный канал ограничен внутренней поверхностью одной трубки или наружной поверхностью нескольких соседних трубок. Разделительная перегородка обычно состоит из собственно мембраны, пористой подложки и конструктивных деталей, обеспечивающих механическую прочность и жесткость. Массовые потоки в мембране и пористой подложке ориентированы по нормали к разделяющей поверхности. [c.10]

    Из табл. 8.17 видно, что наилучшими характеристиками — высокой производительностью и селективностью — обладают асимметричные и композиционные мембраны в виде плоских пленок из ПВТМС и полифениленокоида. Учитывая, что асимметричная мембрана из ПВТМС проще и дешевле в изготовлении, чем композиционные (с ультратонким селективным слоем) мембраны Дженерал электрик , применение ее в аппаратах разделения воздуха представляется более предпочтительным следует иметь в виду также большую механическую прочность пх селективного слоя. [c.308]

    Термальные гели очень хороши в качестве подложек в комбинированных мембранах, так как могут иметь изотропную структуру, а собственно термическая желатинизация позволяет получить структуру полимерной пленки практически любой пористости. Так, используя термальный метод формования, можно получить полупроницаемую мембрану прямым прессованием трехкомпонентной композиции, включающей эфир целлюлозы (триацетат), пластификатор (тетраметиленсуль-фон, диметилсульфоксид и др.) и порообразователь — полиол (три- или тетраэтиленгликоль). Отпрессованную при 200 °С пленку промывают водой для удаления добавок. Полученные таким образом мембраны имеют улучшенные механические свойства и повышенную водопроницаемость по сравнению с мембранами из регенерированной целлюлозы. [c.52]

    Механические свойства обратнооомотичеоких и ульграфильтраци.оиных мембран при сжатии представляют особый интерес, так как они соответствуют условиям, в которых находятся мембраны при работе. Изучение текучести при сжатии должно связывать предел текучести с уменьшением проницаемости в процессе разделения. Предел текучести характеризует способность материала выдерживать сжимающие напряжения без остаточной деформации. Кроме того, это также точка, в которой упругая деформация сжатия сменяется пластическим течением. Ее можно определить графически на кривой давление—деформация, проведя касательную к участку З-образиой кривой с наименьшим наклоном и найдя точку касания кривой и касательной (рис. П-13). [c.73]

    Уравнение Вапт-Гоффа внешне похоже на уравнение состояния газа. Однако осмос нельзя отождествлять чисто механически с числом ударов молекул о стенку. Его механизм еиге ие совсем ясен. Также было бы неверным представлять мембрану чисто механически, как набор пор, селективио пропускающих молекулы растворителя и задерживающих молекулы растворенного вещества только вследствие различия в их геометрических размерах. В действительности, взаимодействие гораздо более сложное. Происходит проникновение вещества растворителя в глубь структуры мембраны. В случае растворов макромолекул закон Вант-Гоффа не выполняется. Осмотическое давление растворов полимеров значительно выше, чем это следует пз закона Вант-Гоффа. [c.50]

    На различии, главным образом, растворимостей углеводородов в материале мембраны основано разделение алканов и аренов. Мембрана может быть получена, например, из винилиденфторида, пластифицированного 3-метилсульфоленом, повышаюшим скорость диффузии бензола в -15 раз [104]. Роль пластификатора полимерной пленки могут выполнять и такие селективные растворители, как диметилформамид или диметилсульфоксид 105]. Преимущество этого способа по сравнению с экстракцией состоит в значительно меньшем расходе растворителя, содержание которого в смеси составляет всего 5—6%- Скорость диффузии обратно пропорциональна толщине мембраны, поэтому для обеспечения достаточно высокой производительности обычно используют тонкие пленки (0,01—0,1 мм), толщина которых определяется механической прочностью материала. [c.67]

    В настоящее время известно довольно большое количество электродов с гомогенными мембранами как с катионной, так и анионной функцией, В качестве мембран используют тонкие пластины кристаллических соещшеняй. Мембраны должны быть механически прочными, химически усто11чивыми и обладать малой растворимостью. Типичным примером гомогенного твердого мембранного электрода является фторид-селективный электрод на основе фторида лантана. Для уменьи ения объемного сопротивпения монокристалла вводят добавки двухзарядного катиона, например ионов Фторидная функция с теоретическим [c.53]

    Гетерогенные мембранные электроды. Не всегда возможно получение мембраны в гомогенном состоянии. Значительно доступнее приготовление твердого гетерогенного мембранного электрода внесением тонкодиспергированного вещества с заданными свойствами в инертную мембрану из полимерного материала (матрицу). Матрица должна обладать механической прочт-ностью, быть химически инертной. В качестве связующего материала используются парафин, коллодий, поливинилхлорид (ПВХ), полистирол, полиэтилен, силиконовый каучук. Последний обладает хорошими гидрофобными свойствами, эластичен, плохо набухает в водных растворах. [c.54]

    Поеле каждого опыта мембрану необходимо споласкивать и хранить в воде (ни в коем случае нельзя допускать ее высушивания ). Мембрана из свиного пузыря обладает достаточно высокой механической прочностью. [c.46]

    Если исследуемый образец представляет собой жесткую диафрагму, обладающую известной механической прочностью и малой протекаемостью (например, целлофан, коллодиевая мембрана, керамическая диафрагма), его зажимают во фланцах между двумя сосудами, наполненными исследуемым раствором. При исследовании порошков капиллярная система образуется путем формирования порошм между двумя перфорированными пластинками. [c.183]


Смотреть страницы где упоминается термин Мембраны механические: [c.139]    [c.576]    [c.10]    [c.283]    [c.330]    [c.121]    [c.216]    [c.307]    [c.56]    [c.170]    [c.159]   
Новое в технологии соединений фтора (1984) -- [ c.347 ]




ПОИСК







© 2024 chem21.info Реклама на сайте