Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила физическая

    Таким образом, если отсутствует электрохимический процесс, пропускание электричества через электролит приводит к чисто физическому процессу заряжения электродов, к изменению их потенциалов. Возникает электродвижущая сила, направленная против внешнего напряжения, и ток прекращается. [c.612]

    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]


    Согласно теории Аррениуса степень электролитической диссоциации а, определяющая долю ионизированных молекул в растворе, должна быть при заданных условиях одной и той же (независимо от метода ее измерения). При этом, согласно ее физическому смыслу, она не может быть больше единицы и меньше пуля. Однако многочисленные экспериментальные данные, полученные разными учеными, противоречили этим положениям теории. В качестве примера в табл, 13 приведены величины а для растворов соляной кислоты, вычисленные на основании измерений электрической проводимости ( i) и электродвижущих сил (02). [c.113]

    Основное содержание учебника составляют разделы, которые, судя по монографиям и периодической литературе, наиболее необходимы биологам. Прежде всего это основы термодинамики и химическое равновесие, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. В дополнение к традиционному изложению этих разделов приведено описание некоторых специфических приложений физической химии, важных для биологии. Так, кратко рассмотрены свойства полиэлектролитов, ионный обмен, мембранное равновесие и мембранные потенциалы, ионоселективные электроды, основы хроматографии и экстракции. [c.3]

    Книга представляет собой издание, наиболее полно соответствующее программе по физической химии для студентов биологических специальностей Московского университета, а также других университетов страны. В ней изложены основы химической термодинамики, учение о химическом равновесии, физическая химия растворов неэлектролитов и электролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. Небольшой раздел посвящен свойствам газов, необходимым для понимания основного материала. Дается краткое описание методов хроматографии, экстракции, ректификации, использования ионоселективных электродов и т. п. [c.2]

    Вальтер Фридрих Нернст (1864—1941)—немецкий физико-химик, в 1887—1889 гг. работал ассистентом В. Оствальда в Лейпциге, с 1894 г. профессор Геттингенского университета. По его инициативе в Геттингене в 1896 г. был построен Институт физической химии и электрохимии. Разработал теорию электролитического растворения металлов и электродных потенциалов и теорию диффузионных потенциалов. Впервые объяснил причину и механизм возникновения электродвижущих сил. В 1893 г. опубликовал учебник Теоретическая химия с точки зрения закона Авогадро и термодинамики , выдержавший много изданий (15-е издание вышло в 1926 г.). Лауреат Нобелевской премии (1920), [c.315]


    Электрохимия. Изучает взаимосвязь химических и физических процессов в растворах с электрическими явлениями. Делится в свою очередь на изучение электропроводности растворов и изучение электродвижущих сил, т. е. возникновения разности потен-. циалов при химических процессах. [c.6]

    Термодинамика имеет дело со свойствами систем, находящихся в равновесии. Она не описывает протекания процессов во времени. Термодинамика дает точные соотношения между измеримыми свойствами системы и отвечает на вопрос, насколько глубоко пройдет данная реакция, прежде чем будет достигнуто равновесие. Она также позволяет уверенно предсказывать влияние температуры, давления и концентрации на химическое равновесие. Термодинамика не зависит от каких-либо допущений относительно структуры молекул или механизма процессов, приводящих к равновесию. Она рассматривает только начальные и конечные состояния. Но и при таком ограничении термодинамический метод является одним из самых мощных методов физической химии, и поэтому, учитывая важную роль термодинамики, первая часть книги посвящена ей. К счастью, термодинамика может быть полностью разработана без сложного математического аппарата, и ее почти целиком можно изложить на том же уровне, на каком написана вся книга. Мы рассмотрим применение термодинамики к химии, начав с нулевого, первого, второго и третьего законов термодинамики, которые в дальнейшем будут применяться к химическим равновесиям, электродвижущим силам, фазовым равновесиям и поверхностным явлениям. [c.11]

    Сделанный Тейлором вывод о том, что измерение электродвижущих СИЛ элементов с жидкостным соединением и без него не дает никаких сведений относительно свободных энергий ионов, был развит Гуггенгеймом [19]. Гуггенгейм изучал вопрос о разности электрических потенциалов между двумя точками, находящимися в различных средах, и пришел к выводу, ЧТО эта величина является совершенно произвольной и не может быть определена через величины, подлежащие физическому измерению. Гуггенгейм проанализировал различие между этим электростатическим потенциалом и обычным потенциалом, который определяется в электростатике. Электростатика основана на математической теории воображаемой электрической жидкости, равновесие и движение которой полностью определяются электрическим полем. Подобного рода электричество фактически не существует в действительности существуют только электроны и ионы, и эти частицы существенно отличаются от гипотетической электрической жидкости тем, что они все время движутся по отношению друг к другу их равновесие является термодинамическим, а не статическим . Условия термодинамического равновесия этих систем при постоянных температуре и давлении можно найти с помощью уравнения [c.299]

    Характер взаимодействия поля или вещества с объектом. Взаимодействие должно быть таким, чтобы контролируемый признак объекта вызывал определенные изменения поля или состояние вещества. Например, наличие несплошности вызывало изменение прошедшего через нее излучения или проникновение в нее пробного вещества. В некоторых случаях используемое для контроля физическое поле возникает под действием других физических эффектов, связанных с контролируемым признаком. Например, электродвижущая сила, возникающая при нагреве разнородных материалов, позволяет контролировать химический состав материалов (термоэлектрический эффект). [c.9]

    Все явления и понятия, связанные с возникновением электродвижущей силы поляризации, разбираются в курсе физической химии. [c.289]

    Потенциометрический метод анализа основан на изменении величины потенциала электрода в зависимости от физических или физикохимических процессов. Например, металлическая пластинка, опущенная в раствор, приобретает потенциал вполне определенной величины в точке спая двух разных металлов возникает разность потенциалов и т. д. Величина потенциала зависит от природы электрода, от концентрации и природы раствора, в который опущен электрод, от характера химических реакций, от температуры и от целого ряда других факторов. Измеряя величину потенциала электрода, вернее разность потенциалов электродной пары, т. е. ее электродвижущую силу (э. д. с.), можно проследить за ходом химических реакций и осуществить контроль технологического режима производства. Электроды в потенциометрическом методе анализа выступают в роли индикаторов. В лабораторной практике потенциометрический метод анализа нашел широкое применение для определения эквивалентной точки в объемных методах анализа, для определения концентрации ионов в растворе, а также для изучения химических реакций. [c.177]

    Различные методы исследования комплексообразования рассмотрены в отдельных главах. Каждая глава содержит метод, основанный на измерении какого-либо физического свойства, например растворимости, распределения между двумя несмешивающимися растворителями, электродвижущей силы гальванической цепи, светопоглощения и т. д. Во вступлении вкратце излагаются общие теоретические положения, необходимые для понимания метода. О технике же эксперимента лишь упоминается. Во многих разделах применение метода, описанного для общего случая, поясняется на одном из примеров, взятых из литературы. В заключение каждой главы дается список литературы, в котором наряду с общими работами, содержащими основы метода, приводится большое число специальных источников, относящихся к отдельным системам, исследованным соответствующим методом. Литература охвачена вплоть а,о 1958 г. [c.22]


    Харнед и Оуэн [ Физическая химия электролитов ] для получения выражения, описывающего влияние диэлектрической проницаемости иа стандартный потенциал элемента, использовали величину электрической работы для переноса зарядов п молекул электролита от воды с диэлектрической проницаемостью 01 к растворителю с диэлектрической проницаемостью Ог- В результате этого получается уравнение Борна для коэффициентов активности электролита. Замена натурального логарифма коэффициентов активности на соответствующее выражение для электродвижущей силы привод 1т к уравнению, связывающему с обратной величиной диэлектрической проницаемости, Окончательное выражение для 1-1-электролитов имеет вид [c.293]

    Активность и коэффициент активности являются реальными физическими величинами, и будучи определены различными методами, дают хорошо совпадающие друг с другом результаты. В табл. 7.4 показано сравнение полученных разными методами коэффициентов активности КС1 в водных растворах, где 7р, 7ат, 1е — соответственно, коэффициенты активности, вычисленные из данных по упругости пара раствора, из криоскопии и из измерения электродвижущей силы гальванического элемента. [c.152]

    Наконец, само понятие упругости растворения по существу относится к некоторой эмпирической константе и имеет лишь условное физическое значение. Поэтому следовало бы для описания механизма возникновения электродвижущих сил использовать совершенно иные представления. При этом термодинами- [c.228]

    С целью приближения обозначений физических величин к рекомендуемым Комиссией по электрохимии и ИЮПАК электродный потенциал, как это уже принято в некоторых отечественных руководствах по электрохимии, обозначен буквой вместо ранее применявшейся буквы ф соответственно для стандартного электродного потенциала принято обозначение При этом обозначения электродвижущей силы и ее стандартного значения остаются прежними ( я Е°). [c.9]

    Под руководством я. и. Герасимова начато изучение термодинамических свойств металлических сплавов сначала в жидком, а потом и в твердом состоянии. Существенно было расширено исследование кислородсодержащих систем, в том числе оксидов тугоплавких металлов и их соединений с оксидами щелочноземельных и переходных металлов, а также фаз переменного состава в оксидных, халькогенидных и металлических системах. Развитие этих работ тесно связано с совершенствованием экспериментальных методов термодинамики метода гетерогенных равновесий, метода электродвижущих сил в нескольких вариантах и метода измерения давления насыщенного пара. Обзор этих работ Яков Иванович опубликовал в шестом выпуске сборника Современные проблемы физической химии , который издавался по его инициативе, а многие выпуски — под его редакцией. [c.6]

    Вальтер Нернст, ученик Оствальда, в 1920 г. стал лауреатом Нобелевской премии по химии. Его имя приобрело широкую известность после выхода в свет в 1893 г. монографии Теоретическая химия с точки зрения закона Авогадро и термодинамики 239]. Главная заслуга Нернста заключается в создании теоретических построений и математического аппарата физической химии. Исходя из данного им определения удельного давления раствора и растворимости металлов, Нернст создал теорию электродвижущих сил. [c.96]

    Электродвижущая сила только что заряженного аккумулятора не превыщает двух с половиной вольт. При пользовании аккумулятором нельзя допускать падение электродвижущей силы ниже 1,8 в. Снижение происходит и при нахождении аккумулятора в покое, поэтому один раз в 30—40 дней аккумулятор ставят на подзарядку. Для этой цели лучше всего собирать вое а ку-муляторы химического и физического кабинета и ставить их на зарядку одновременно. При этом через последовательно соединенные аккумуляторы пропускают постоянный (выпрямленный) ток от осветительной сети с включением в цепь реостата и амперметра положительный полюс источника тока соединяют с положительным полюсом крайнего аккумулятора, а отрицательный—с отрицательным другого крайнего аккумулятора. Не надо допускать при зарядке превышения силы тока, допускаемой для этой цели (обычно помечена на аккумуляторе или в приложенной к нему брошюре). [c.45]

    Практически коэффициент активности определяют путем измерения электродвижущих сил гальванических цепей. Каков же физический и термодинамический смысл коэффициента активности  [c.10]

    Если электрохимическая ячейка, включающая в себя твердый электролит, находится в температурном поле, так что ее электроды поддерживаются при разных температурах, в ней возникают различные термоэлектрические эффекты, связанные с диффузией ионов под влиянием градиента температуры. Из них наибольшее значение для физической химии твердого тела имеет эффект Зеебека, заключающийся в возникновении электродвижущей силы ячейки в неизотермических условиях (терм о-э. д. с.). [c.256]

    Основы теории Нернста. В предыдущей главе мы рассматривали гальванический элемент в целом, как систему, в которой работа химической реакции превращается в электрическую. При этом мы не затрагивали вопроса ни о том, как это превращение происходит, ни о том, почему в разных элементах различны электродвижущие силы, которые в дальнейшем сокращенно будем обозначать через ЭДС. Нернст (1886) дал замечательную теорию, объясняющую эти вопросы, не разрешаемые одной лишь термодинамикой. Эта теория, известная под названием осмотической, основана на теориях растворов Вант-Гоффа и электролитической диссоциации Аррениуса. Вместе с последними она явилась тем фундаментом, на котором была построена современная физическая химия. [c.356]

    Любые физические характеристики, такие, как давление, нагрузка, напряжение, вибрация или ускорение, могут быть зарегистрированы, если их выразить при помощи преобразователей, в виде электрических импульсов. Имеется много типов преобразователей. В основном их действие основано на регистрации изменения трех фундаментальных электрических характеристик индуктивности, сопротивления и емкости. Электрический импульс, соответствующий измеряемой величине, например силе трения, изменяет одну из этих характеристик, которая затем точно измеряется и регистрируется. Косвенно измерять механические характеристики можно при помощи электромагнитных методов. В этом случае электродвижущая сила возбуждается при передвижении соленоида или магнитной системы. Можно использовать также пьезоэлектрические методы. Они основаны на том, что при приложении нагрузки к поверхности пьезокристалла на последней возникает электрический заряд. [c.37]

    Вычисление / по электродвижущим силам. Одним из наиболее точных и удобных способов для осуществления физических и химических изменений состояния при обратимых и изотермических условиях являются электрохимические дроцессы. Так как уменьшение свободной энергии, испытываемое системой при переходе от начального к конечному состоянию при постоянном давлении, равно максимальной полезной работе, производимой системой в обратимых изотермических условиях, то, следовательно, электрическая работа, произведенная при изменении состояния системы, также является мерой уменьшения ее свободной энергии. Далее, когда Q кулонов электричества переносится от точки с низким потенциалом к точке с потенциалом на Е вольт более высоким, то электрическая работа,, по определению, составит EQ поэтому [c.95]

    Важное значение физических свойств не трудно себе уяснить. Как мы видим на примере человеческого организма, жизнь существует в среде, физические условия, которой узко ограничены. Достаточно несколько примеров для иллюстрации этого факта. Нам известны температуры от —273 до 6000° , но человек может существовать лишь в очень узких температурных пределах отклонения температуры тела лишь на 2—5° от нормальных 37° указывают на серьезные нарушения в организме. Человеческое ухо не улавливает ни самых длинных, ни самых коротких звуковых волн, известных в физике. Глаз реагирует на очень ограниченную область известного спектра электромагнитных волн. Нервы чрезвычайно чувствительны к ничтожным изменениям электродвижущей силы. Незначительное изменение потенциала и частоты нормальных волн, возникающих в мозгу, может привести к судорогам. [c.675]

    Кривые время—температура могут быть использованы не только для определения чистоты веществ, но и для других целей (определение молекулярного веса и теплового эффекта, в термическом анализе и т. д.). В других случаях самописец запишет изменение любого физического или химического параметра во времени, который с помощью различных датчиков может быть превращен в электродвижущую силу. [c.115]

    Н. К. Воробьевым написаны главы Определение константы равновесия реакции в газовой фазе , Электропроводность электролитов , Электродвижущие силы профессором В. А. Гольц-шмидтом — главы Ошибки измерения, их причины и способы расчета , Применение графического метода в физической химии , Определение молекулярного веса растворенного вещества криоскопическим и эбулиоскопическим методами , Калориметрические измерения , Определение давления насыщенных паров легколетучих жидкостей . Теплопроводность газов , Строение молекул доцентом М. X. Карапетьянцем — главы Гетерогенные равновесия , Химическая кинетика и приложение Устройство и установка термостата . Инженером И. П. Соловьевым написано приложение Электронные лампы и их применение . [c.10]

    Измерение и регулирование температуры. Для измерения температуры у нас в стране применяют термодинамическую и стоградусную щкалу. Нуль стоградусной щкалы соответствует температуре плавления льда при давлении 760 мм рт. ст., а 100 °С— температуре кипения воды при том же давлении. Измерение температуры основано на физических явлениях, происходящих при нагревании тел, — возникновении электродвижущей силы в месте спая двух разнородных проводников. Два спаянных конца проволоки из различных металлов называют термопарой. Величина электродвижущей силы термопары зависит от температуры спаянного конца. Электрический ток термопар является постоянным, поэтому один из ее свободных концов имеет положительный потенциал, а другой — отрицательный. Свободные концы термопар соединяют проводами, а затем с измерительным прибором. Действие прибора основано на компенсации электродвижущей силы термопары противоположно направленной разностью потенциалов, создаваемой током от батареи, включенной в цепь термопары. [c.87]

    В учебнике (1-е изд. — 1986 г.), написанном в соответствии с утвержденной программой курса, изложены осноны химической термодинамики, учение о химическом равновесии, физическая химия растворов электролитов и неэлектролитов, учение о пограничных потенциалах и электродвижущих силах, химическая кинетика и катализ. Дается краткое описание методов хроматографии, экстракции, ректификации, использования ионоселектнвных электродов. Рассмотрены исходные положения термодинамики неравновесных процессов. [c.2]

    Из методов электрохимии, рассматриваемых в курсе физической химии — потенциометрии, вольтамперометрии, включающей полярографию, методы электродвижущих сил, кондуктометрии (электрической проводимости), ку-лонометрии, наибольшее применение находят методы ЭДС и вольтамперо-метрия. [c.288]

    Будущий знаменитый немецкий физик и физикохимик родился в 1864 г. в заштатном городке Бризене (ныне он называется Вомбжезно и находится на территории Торуньского воеводства в Польше). С девятнадцати до двадцати трех лет талантливый юноша сменил четыре университета, стараясь как можно полнее удовлетворить жажду знаний. Он учился сначала в Цюрихе, затем — в Берлине и Граце и, наконец, в Вюрцбурге. В 1887 г. он представил и успешно защитил диссертацию Об электродвижущих силах, вызванных магнетизмом в металлических пластинах, через которые проходит тепловой поток . После этого молодой ученый стал ассистентом одного из ведущих физикохимиков Европы Вильгельма Оствальда и работал вместе с ним в Лейпциге. Через семь лет ученый получил должность профессора в Гёттингенском университете впоследствии он возглавил Институт физической химии в Берлине. В это время он разработал теорию гальванического элемента, развил свои исследования по электрохимии и начал заниматься общими вопросами термодинамики. К 1906 г. он совершил научное открытие, которое его прославило он сформулировал третий закон термодинамики, который связан с понятием об абсолютном нуле температур. Этот ученый был не только теоретиком, но и умелым изобретателем, который создал водородный электрод , свинцовый аккумулятор и электрическую лампу со стерженьком накаливания из оксидов циркония, тория и иттрия. Кто же этот ученый  [c.275]

    Значительная часть практических работ по физической химии опирается на основные положения химической термодинамики. Сюда относятся калориметрические измерения (гл. III), изучение равновесий в голЮгенных (гл. IV) и гетерогенных (гл. V— XI) системах и ряд электрохимических измерений—определение электродвижущих сил обратимых гальванических элементов, потенциометрическое определение активностей ионов, изучение ионных равновесий (гл. XIV—XVI). [c.27]

    Чурагулов Б. Р., Калашников Я. А. Исследование фазовых превращений при высоких давлениях методом электродвижущих сил и дифференциально-термического анализа. — В кн. Современные проблемы физической химии. М., 1970, т. 4, с. 499— 515. [c.211]

    Косвенные измерения теплот реакций. Точные величины изменений энтальпии, сопровождающих физические или химические изменения состояния, могут быть также получены из температурного коэфидиента изменения стандартной свободной энергии, соответствующего данной реакции. Для этого в случае химической реакции изменение свободной энергии выражают либо в, виде наблюдаемой константы равновесия, либо в виде электродвижущей силы, найденной для данной реакции. Затем, пользуясь меходами, описанными в гл. VI, получают искомую теплоту реакции или теплоту образования из найденной зависимости К или Е от абсолютной температуры. [c.50]

    АЕ1 можно рассчитать по уравнению (3.39), если или /Сопределены каким-либо экспериментальным методом, как-то измерением электродвижущих сил для определением констант равновесия из взрывных опытов, спектров поглощения или другими химическими и физическими методами, применявшимися для этой цели. [c.310]

    В современных электрохимических методах (например, в осциллополярографии, различных вариантах переменноточной полярографии и т. д.) часто применяются электродвижущие силы и токи самой различной формы и величины. В этих условиях обычные эквивалентные схемы становятся недействительными, и, естественно, возникает вопрос об электрических эквивалентах, справедливых при произвольных ЭДС и токах. Методы математического и физического моделирования позволяют решать подобные задачи и строить такие эквиваленты, которые называются электрическими моделями, электрическими аналоговыми машинами. Как это видно из их применения в других областях науки и техники, замечательной особенностью подобных электрических моделей является возможность более простыми и экономными средствами электроники проводить сложные эксперименты. Применительно к электрохимическому эксперименту это означает провести процесс без элек- [c.91]

    Наиболее часто для измерения температур используют следующие физические явления изменение объема изменение давления газов, паров и жидкостей при постоянном объеме возникновение электродвижущей силы в месте сная двух разных металлов (явление термоэлектричества) изменение электрического сопротивления проводников. [c.58]

    В практикум вошло описание более 30 работ. Наряду с классическими работами, входящими во все существующие руководства к лабораторным занятиям по физической химии, включены и некоторые новые (изучение равновесия в газовой фазе, определение парахора, рефрактометрия, определение дипольного момента) кроме того, расщирены разделы, посвященные химической кинетике и электрохимии (электродвижущие силы). [c.9]


Смотреть страницы где упоминается термин Электродвижущая сила физическая: [c.4]    [c.6]    [c.275]    [c.21]    [c.706]    [c.274]    [c.408]    [c.58]    [c.131]   
Теоретическая электрохимия Издание 2 (1969) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Электродвижущая сила ЭДС



© 2024 chem21.info Реклама на сайте