Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палладий в платиновых солях

    ОТ других элементов платиновой группы (а также от золота и неблагородных металлов) наиболее часто применяется осаждение в виде хлороплатината аммония. Отделение это основано на том, что родий и палладий в наиболее характерном для них валентном состоянии не образуют нерастворимых двойных солей с хлоридом аммония. Четырехвалентные осмий, рутений и иридий дают соли, изоморфные с солью платины и обладающие примерно такой же растворимостью, как хлороплатинат аммония. [c.411]


    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]

    Платиновый нашатырь. Светло-желтый (с примесью соответствующей соли иридия, рутения или палладия — красноватый, соли родия — желто-зеленый). При нагревании разлагается. Плохо растворяется в холодной воде, в горячей воде анион подвергается акватации и протолизу. Кристаллогидратов не образует. Не растворяется в концентрированном растворе хлорида аммония. Не реагирует с кислотами. Переводится в раствор гидроксидом натрия при нагревании. Реагирует с гидратом аммиака, сероводородом. Окислитель. Вступает в реакции обмена лигандами. Получение см. 908, 917.  [c.462]

    Общие сведения. К металлам платиновой группы (платиноидам) относятся рутений (Ки), родий (КЬ), палладий (Рё), осмий (Оз), иридий (1г) и платина (Р1). Благодаря красивому внешнему виду и высокой химической стойкости платиноиды наряду с золотом и серебром называют благородными металлами. Значительно расширилось применение платиноидов в различных отраслях промышленности, что связано с развитием нефтехимии, химии катализаторов, электроники, авиастроения увеличился контакт работающих с порошкообразными металлами, их оксидами и солями. [c.469]


    Открытие следов палладия в платиновых солях [c.385]

    Выполнение анализа. 0,1—1 мг продажной платиновой соли растворяют в 0,1 мл воды и каплю полученного раствора переносят капилляром на реактивную бумагу. В присутствии палладия немедленно образуется пятно, окруженное фиолетовым кольцом. [c.385]

    Чувствительность — 0,005% палладия в платиновой соли. [c.385]

    Для химико-технических исследований имеют значение платиновые руды, платиновые отбросы, часто содержащие еще палладий, иридий, золото, серебро и никкель (белое золото, золото для зубов), платиновый шквар и сор из мастерских ювелирных изделий, контактные вещества химической промышленности (катализаторы), фотографические бумаги, платиновые соли и их растворы. [c.326]

    Принцип метода. Ион двухвалентного палладия образует с 2-нитрозо-1-нафтолом внутрикомплексную соль, окрашенную в фиолетовый с переходами до оранжево-красного цвет и растворимую в бензоле или толуоле. Толуольный раствор окрашенного комплекса двухвалентного палладия устойчив в течение не менее 48 час., и его можно хорошо колориметрировать при длинах волн 370—550 мц. Собственная цветная реакция появляется в слабокислых растворах (pH 2,5) в присутствии комплексона, маскирующего некоторые мешающие элементы, как, например, кобальт, никель, хром и железо. В присутствии комплексона не мешают определению палладия платиновые металлы. Экстракцию палладия толуолом проводят в аммиачном растворе, чем избавляются от избытка реактива. Подчинение закону Ламберта— Беера наблюдается при концентрации палладия 5—25 мкг в 5 мл толуола. [c.216]

    Содержимое тигля — смесь родия(П1) и палладия(П) — выпаривают с 3 каплями концентрированной хлороводородной кислоты на водяной бане до получения влажных солей. (Не пересушивать ) Образовавшиеся комплексные хлориды платиновых металлов растворяют в 0,2 мл 2 Ai раствора НС1. [c.214]

    Роль инертного носителя состоит в увеличении поверхности контакта металла или другого активного компонента катализатора с реагирующими веществами. Поэтому удельная поверхность самого носителя и его структура влияют на активность катализатора. Кроме того, его активность, селективность и стабильность нередко могут быть повышены добавлением небольшого количества других металлов, солей, оксидов или минеральных кислот, называемых промоторами (активаторами). Для платиновых катализаторов это обычно соли платины, палладия, олова, железа, цинка или минеральные кислоты. Так, промотирование катализатора Адамса хлоридами железа или олова (6,5-7 % по массе) увеличивает скорость гидрирования валерианового альдегида в 8-10 раз  [c.19]

    При гидрировании некоторых соединений с платиновой чернью, полученной восстановлением окиси платины, чернь можно использовать иногда два, три или даже большее число раз, предварительно активируя ее (примечание 9) воздухом или кислородом. Использованный катализатор следует переработать (примечание 3) вместе с платиной, полученной из фильтратов (примечание 7), при сожжении фильтровальной бумаги (примечание 10) или снятой со стенок стакана (примечание 11). Для получения наилучших выходов при каталитическом гидрировании в присутствии окиси платины и платиновой черни нужно для каждого восстанавливаемого соединения подобрать наиболее благоприятные условия реакции. Необходимо принимать во внимание следующие факторы температуру, среду, в которой происходит восстановление окиси платины в платиновую чернь (примечание 12), влияние следов неорганических солей (примечание 13) и природу растворителя (примечание 14). Для каталитического восстановления применяется также палладиевая чернь из закиси палладия иногда с нею получаются лучшие результаты, хотя в большинстве случаев следует отдать предпочтение платине (примечание 15). [c.358]

    Основные научные работы относятся к химии и технологии платины, палладия и хрома. Первым в России исследовал платиновые металлы и получил (1797) ряд тройных комплексных солей платины — хлороплатинаты магния, бария и натрия. Изучал растворимость в воде хлороплатината аммония. Получил (1797) амальгаму платины восстановлением хлороплатината аммония ртутью. Разработал (1800) новый способ получения ковкой платины прокаливанием ее амальгамы. Предложил метод отделения платины от железа. Впервые получил (1797) и описал золь металлической ртути. Открыл (1800) хромовые квасцы, получил ряд окислов хрома. Исследовал сплавы платины с медью и серебром, сернистую платину, возглавлял (1799—1805) Закавказскую экспедицию, изучавшую минеральные богатства Кавказа и Закавказья, способствовал развитию горного дела в этом районе. [c.348]

    Токсичность платиновых металлов, в частности родия и палладия, незначительна, соли рутения и осмия вызывают кашель, раздражение верхних дыхательных путей отравление осмием вызывает слезотечение, появление металлического привкуса во рту. Аналогично действуют соединения платины. Например, попадание внутрь организма (NH4)2[Pt l6] вызывает у человека светобоязнь, приступы астмы Pt02 действует прижигающе на кожу, вызывает дерматиты. [c.492]


    Родий Rh (лат. Rhodium), P.— элемент VIII группы 6-го периода периодич. системы Д. И. Менделеева, п. н. 45, атомная масса 102,905, принадлежит к семейству платиновых металлов. Имеет один стабильный изотоп i Rh. Открыт в 1803 г. И. Волластоном. Название от греч. rhodon (роза), так как растворы некоторых его солей окрашены в розовый цвет. В природе встречается вместе с платиной и платиновыми металлами. Р.—серебристо-голубоватый металл, более твердый и тугоплавкий, чем платина и палладий. Химически очень пассивен, не растворяется в кислотах. Проявляет главным образом степень окисления +3. Подобно платине, образует различные комплексные ионы. Применяют для получения стойких к потускнению покрытий с высокой отражательной способностью. Сплавы Р. с платиной применяют для изготовления химической посуды, в термопарах, как катализаторы, в ювелирном деле. [c.114]

    Монокарбонилы характерны для родия и иридия. Из производных других платиновых металлов описан получаемый взаимодействием НиВгз с СО (350 ат, 150 °С) бесцветный Ru( O)Br, при нагревании до 200 С дисмутирующий на Ru и Ни(С0)2Вгг. Для палладий известна соль состава NH4[Pd( O) l2], результаты изучения которой говорят в пользу димерной ее формулы. Интересным производным этого элемента является красно-фиолетовый полимер состава [Р0(С0)С1]х. Ofi нерастворим в обычных растворителях, диамагнитен, нелетуч и термически устойчив до 250 °С. [c.388]

    Палладий (Palladium). Иридий (Iridium). Палладий — серебристо-белый металл, самый легкий из платиновых металлов, наиболее мягкий и ковкий. Он замечателен своей способностью поглощать огромное количество водорода (до 900 объемов на 1 объем металла). При этом палладий сохраняет металлический вид, но значительно увеличивается в объеме, становится ломким и легка образует трещины. Поглощенный палладием водород находится, по-видимому, в состоянии, приближающемся к атомарному, и поэтому очень активен. Насыщенная водородом пластинка палладия переводит хлор, бром и йод в галогеноводороды, восстанавливает соли железа (И1) в соли железа (П), соли ртути (П) в соли ртути (I), диоксид серы в сероводород. [c.532]

    Палладий растворим в азотной кислоте. Платиновые металлы могут быть переведены в растворимое состояние сплавлением со щелочами в присутствии окислителей (ЫагОг, КЫОз). Так, при сплавлении рутения с гидроксидом калия в присутствии нитрата калия образуется смесь легко растворимых в воде солей — рутената калия К2Ри04 и перрутената калия КНи04  [c.497]

    Разновидности и способы приготовления палладиевых катализаторов аналогичны описанным для платиновых. Широко употребляется в лабораториях палладий, нанесенный на карбоиат кальция (бария) или сульфат бария. Для получения этих катализаторов све-жеосажденный карбонат кальция (сульфат бария) замешивают с раствором хлорида палладия при температуре 50-60 °С и после адсорбции соли палладия осадок отфильтровывают, тщательно промывают водой и высушивают. Адсорбированная на поверхности носителя соль восстанавливается до металлического палладия водородом в процессе гидрирования. Палладиевая соль может быть также восстановлена щелочным формалином или водородом сразу после смешения ее раствора с горячей суспензией носителя в процессе приготовления катализатора. [c.20]

    Конечным продуктом каталитического восстановления солей флавилия (XXI) в присутствии палладия на сульфате бария [118] или платиновой черни [119] являются хроманы (XXII). Те же соединения образуются и при восстановлении амальгамой алюминия [120]. [c.235]

    Малые количества соли палладия отделяют от солей других платиновых металлов соосаждением с диметил-глиоксиматом никеля Соосаждением с осадком, обра зованным арсеназо и кристаллическим фиолетовым, удается отделять кюрий от 10 -кратных количеств маг- [c.77]

    Основные исследования посвящены химии платиновых металлов. Получил (1883) родиехлористый аммоний (соль Вильма). Разработал способ получения чистого палладия переводом его в четырехаммиачную соль и последующим осаждением в виде палладозамина. [c.105]

    Чтобы снизить 1еренапряжеиие и предотвратить разрушение катода в результате водородной коррозии, его поверхность пкт 1-вируется путем иаиессння слоя платины, палладия или другого металла плати1 овой группы из водного раствора, содержащего ие более 5 г л (в некоторых случаях 0,1—0,5 г/л) соли одного или нескольких из этих металлов. На основной слой наносится дополнительный слой платиновой черни. Расход платины или палладия не превышает 10 г/м- поверхности катода. Потери активирующих металлов, расходуемых для покрытия, незначительны. [c.184]

    Этот способ разделения обычно применяют для анализа смесей, которые могут быть богаты иридием, но содержат лишь ничтожные количества осмия и рутения. В некоторых случаях предотвращают выделение иридия вместе с платиной, восстановив его предварительно до трехвалентного состояния, а иногда обе соли осаждают совместно, с целью отделения их от палладия и родия. Родий, который в солянокислом растворе всегда находится в трехвалентном состоянии, и палладий (II) не образуют нерастворимых двойных солей с хлоридом аммония, но они увлекаются солью платины, причем родий с исключительным постоянством. С другой стороны, достигнуть этой реакцией количественного осаждения платины фактически невозможно. Лишь продолжительная обработка большим избытком хлорида аммония приводит к почти количественному выделению хлороплатината аммония, но это способствует также соосаждению других металлов. Таким образом, количественно отделить платину в виде хлороплатината аммония от других металлов платиновой группы практически не представляется возможным, хотя результаты определения платины иногда бывают близки истинным за счет взаимной комненЬации ошибок.  [c.411]

    Простые роданиды известны лишь для палладия (П) и платины (И). Комплексные роданиды получены для всех платиновых металлов и золота (кроме оомия) при взаимодействии комплексных хлоридов этих металлов с избытком роданидов целочных металлов. Поскольку СЫ5-"-ион — восстановитель, комплексные роданиды образуются преимущественно у низших степеней окисления платины, рутения и иридия. Соли щелочных металлов комплексных роданидов, за исключением роданидов золота, хорошо растворимы в воде и в спирте. [c.54]

    Комплексоны, иначе поликарбоновые аминокислоты, образуют устойчивые внутрикомплексные соединения, в которых связь с металлом осуществляется через азот аминогрупп и кислород карбоксильных групп. Соединения с нитрилотриуксусной (НТА) кислотой известны только для палладия [56]. Соединения с этилендиаминтетрауксусной кислотой (ЭДТА) известны для всех платиновых металлов, кроме осмия. Отношение металла к ЭДТА во всех соединениях равно 1 1. Комплексонаты образуются при взаимодействии комплексных хлоридов металлов с этилендиаминтетрауксусной кислотой или ее двунатриевой солью (комплексоном III). Вследствие восстановительных свойств ЭДТА первой стадией ее взаимодействия с рутением [c.61]


Смотреть страницы где упоминается термин Палладий в платиновых солях: [c.132]    [c.50]    [c.181]    [c.435]    [c.699]    [c.185]    [c.216]    [c.335]    [c.109]    [c.569]    [c.96]    [c.387]    [c.1828]    [c.136]    [c.142]    [c.153]    [c.329]    [c.372]   
Капельный анализ (1951) -- [ c.385 ]




ПОИСК





Смотрите так же термины и статьи:

Палладий

Палладий палладий

Платиновые соли



© 2025 chem21.info Реклама на сайте