Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защитные покрытия магнии

    Твердые и высокопрочные УНС после обжига или после обжига, графитации и соответствующей обработки (механическая обработка, нанесение защитного покрытия и др.) используют в электротермических производствах в качестве электродной продукции (электродов). Электродную продукцию применяют для подвода тока в рабочую зону электролизеров и электропечей, предназначенных для выплавки алюминия, магния, высококачественных сталей и других металлов, а также ферросплавов и карбидов. В зависимости от эксплуатационных характеристик и условий применения различают два вида электродов. [c.99]


    Аналогичные результаты получены в работе С. Ф. Наумовой, Ю. Н. Михайловского, П. И. Зубова [34] при определении толщины растворившегося слоя магния в чистой атмосфере под защитными покрытиями и без них. Независимо от природы и толщины защитной полимерной пленки скорость окисления металла в чистой атмосфере всегда равна скорости коррозии неизолированного металла. По мнению авторов, во влажной атмосфере, не содержащей [c.31]

    Рекомендуемый метод защиты магния заключается в следующем. Сначала на поверхности металла получают конверсионное покрытие, например анодированное типа Dow-17. Затем наносят покрытие, стойкое к щелочам, например непигментированную эпоксидную смолу, отверждаемую путем отжига. Стойкость к щелочам необходима ввиду того, что в присутствии влаги магний дает сильную щелочную реакцию на дефектах защитного покрытия. [c.160]

    В частности, в системах с пластмассовым защитным покрытием рационально использовать катодную защиту с гальваническими анодами из магния или цинка. Для защиты протяженных систем с высокой величиной потребляемого защитного то-ка повсеместно используется катодная защита с внешним источником тока. Схема использования такой защиты приведена на рис. 1.4.46. [c.129]

    Описывается протекторное покрытие, состоящее из интерметаллических соединений магния с металлом, образующим защитное покрытие. При этом покрытие является анодным по отношению к металлу изделия. Это покрытие покрывается дополнительным защитным неметаллическим слоем, например конверсионным. [c.194]

    Нитевидная коррозия — специфическая форма щелевой коррозии, распространяющаяся на поверхности металла под защитным покрытием в атмосферных условиях. Этот вид разрушения наблюдается на стали, сплавах магния и алюминия, на которых нанесены металлические (олово, серебро, золото), а также фосфатные и лакокрасочные покрытия. Как правило, нитевидная коррозия не ведет к разрушению металла, а лишь ухудшает его внешний вид. Нитевидная коррозия на стали проявляется в виде сетки красно-коричневых продуктов коррозии, состоящей из нитей , шириной Не более 2 мкм, которые оканчиваются активными точками роста, содержащими зе-лено голубые продукты коррозии с двухвалентными ионами железа. Кислород, поступая к точкам роста, переводит продукты коррозии в гидроокись трехвалентного железа. Таким образом пути миграции кислорода к центрам коррозии и формируют нити . [c.612]


    Стандарт устанавливает методы ускоренных испытаний магния и магниевых сплавов без защитных покрытий на общую коррозию для получения сравнительных данных о коррозионной стойкости сплавов [c.637]

    За рубежом используют защитные покрытия из био-стойкого цемента толщиной 10 мм. В качестве биоцида добавляют до 10 % тонко измельченного порошка меди, который с оксихлоридом магния образует оксихлорид меди магния, обладающий фунгицидным и бактерицидным свойствами. Такие покрытия рекомендованы на сахарных, пивоваренных и других предприятиях. [c.527]

    Методы защиты металлов от коррозии разнообразны. Существуют а) катодная защита от внешнего источника тока или от накоротко включенного анода с сильно отрицательным потенциалом (цинка, магния, алюминия), так называемого протектора б) обработка коррозионной среды путем введения в нее сильных окислителей или веществ, создающих на поверхности металла защитные пленки (например, добавка хромата натрия к воде) в) защитные покрытия. К последним относятся  [c.333]

    Для простых случаев химического взаимодействия, не осложненных изменением механизма процесса в системе ненапряженный эластомер— жидкая среда, определяющим процессом является диффузия среды в резину. Об этом свидетельствуют как небольшие значения энергии активации, например при действии соляной кислоты на СКС-30-1, вулканизованный оксидом магния и = 26,6 кДж/моль), так и прямолинейная зависимость параметра, характеризующего скорость реакции от [298, 299]. Поэтому для прогнозирования изменения свойств полимера, если они непосредственно связаны с диффузией (например, защитная способность полимерного покрытия) можно использовать известные зависимости диффузии от концентрации среды и температуры. При наличии достаточно чувствительных методов определения проникновения жидкой среды в резину прогнозирование срока службы сравнительно толстого защитного покрытия можно осуществить и но экспериментальным данным, полученным за короткое время и без ускорения диффузии, т. е. в тех условиях, при которых покрытие работает (например, при диффузии соляной кислоты в гуммировочные резины на основе бутадиен-стирольных каучуков [265]). Уменьшение толщины неразрушенного слоя резины в процессе диффузии паров химически агрессивных сред в резины из СКИ-3, СКМ.С-10, СКН-18 + наирит используется для прогнозирования защитной способности этих резин. [c.138]

    Резины и эбониты применяют как в виде различных прокладочных и уплотнительных деталей и конструкционных материалов, так и в качестве защитных покрытий от действия агрессивных сред для аппаратов и сосудов из стали, чугуна, латуни, алюминия, сплавов алюминия и магния, бронз (за исключением оловянистой). [c.197]

    Защита от коррозии имеет исключительно важное значение для черных металлов—железа, чугуна и стали, так как эти металлы имеют наибольшее распространение в технике и быту, но в силу своих физико-химических свойств наиболее подвержены действию коррозии. Ряд цветных металлов и сплавов — алюминий, магний, медь, бронза, латунь и другие также подвергаются коррозии, но в значительно меньшей мере, чем черные металлы, и тоже в некоторых случаях подвергаются защитным покрытиям более стойкими металлами, бесцветными или цветными лаками, а также оксидированию и пассивированию. [c.50]

    Газоочистное оборудование производства электролитического магния Защитные покрытия с применением лака ЭП-730 [c.56]

    Перемешивание, происходящее во время индукционной плавки в вакууме, вполне достаточно, чтобы обеспечить требуемую однородность состава сплава во всем объеме ванны. Это перемешивание возникает за счет температурных градиентов, вихревых токов и выделения паров магния из расплава. Из этих трех факторов наибольшее значение имеет выделение паров магния, создающее исключительно энергичное перемешивание. Если нагрев происходит слишком быстро, то это перемешивание может стать настолько бурным, что приведет к разрушению защитного покрытия тигля (а следовательно, и к быстрому поглощению углерода) или, при нерегулируемом нагреве, может даже привести к выбросу порошка легирующей присадки из тигля, прежде чем она успеет раствориться. Чрезмерное выделение магния может быть предотвращено путем травления (гл. УП1) или пескоструйной очисткой загружаемого чернового урана с целью удаления поверхностных слоев, содержащих большое количество магния. Помимо этого метода наилучшим способом предотвращения бурного кипения и разбрызгивания сплава является уменьшение скорости нагрева. С другой стороны, недостаточное перемешивание можно компенсировать продувкой аргона или гелия, вводимого через графитовую трубку. [c.433]

    Поглощение углерода может быть значительным, если расплавленный уран нагреть до необычно высокой температуры с целью растворения легирующего металла. Обычно для уменьшения поглощения углерода на тигель наносятся защитные покрытия. Наиболее подходящий материал для этих целей — цирконат магния, распыляемый тонкой струей на поверхность нагретого графита. Покрытие быстро сохнет, не образуя пузырей и вздутий. [c.433]


    Полученный совместным восстановлением черновой уран-молибденовый сплав может быть переплавлен в слитки в вакуумной индукционной печи. Очистка поверхности чернового слитка травлением нежелательна из-за быстрого взаимодействия сплава с азотной кислотой. Лучше применять пескоструйную очистку. Для того чтобы после выдержки расплава в графитовом тигле при температуре 1260° С и ниже содержание углерода в уран-молиб-деновых сплавах (до 9 вес. % молибдена) не превысило 0,02%, было успешно применено защитное покрытие тигля слоем цирконата магния. Однако при этом поверхность загружаемого на переплавку чернового металла должна быть свободна от шлака, так как иначе покрытие из цирконата магния быстро разрушается и ускоряется поглощение углерода. [c.440]

    Рабочий потенциал цинка по отношению к катодно защищаемой стали равен 200— 250 мВ, что значительно меньше потенциала магния (700 мВ). Такая величина потенциала цинка идеальна для морской воды или других электролитов с низким удельным электрическим сопротивлением, но применение цинка в средах с более высоким удельным сопротивлением не всегда оправдано. Например, использование цинка не даст, по-видимому, существенного эффекта при защите больших подземных систем в почвах с высоким удельным сопротивлением. В то же время цинк оказался полезным материалом для защиты небольших подземных конструкций (таких как резервуары), помещенных в почву с удельным сопротивлением менее 3000 Ом-см. В работе Оливе [19] обсуждается применение цинковых анодов для защиты подземного оборудования на бензоколонках в США. Более крупные системы, насчитывающие значительное число цинковых анодов, созданы для защиты стальных газовых магистралей в Хьюстоне и Новом Орлеане [20]. Из общего числа защитных анодов, равного 1200, почти 1000 — цинковые. Это является хорошим примером, показывающим, что при соответствующих почвенных условиях цинковые аноды можно использовать для защиты крупных подземных сооружений. Цинк довольно широко применяют для защиты труб малого диаметра, не имеющих защитных покрытий, а в последнее время его начинают все чаще использовать для защиты труб большого диаметра с покрытиями в зонах плотной застройки, что позволяет уменьшить взаимное коррозионное влияние соседних подземных коммуникаций. Цинковые аноды применяют также для защиты оцинкованных резервуаров для холодной воды. [c.168]

    Хотя применение магния без защитных покрытий в морской воде совершенно необычно, в табл. 15 все же приведены некоторые данные, полученные при испытании незащищенного магния и его сплавов в зоне прилива.  [c.439]

    Возможно, что наиболее важным и единственным требованием к защитному покрытию на магниевых сплавах является создание основы для хорошего удержания краски в течение длительного времени. Все четыре вида обработки, перечисленные выше, обеспечивают такую основу, к которой краска хорошо пристает и удерживается в течение 2 лет в промышленной или морской атмосфере. Чтобы получить безукоризненное сцепление слоя краски, перед обработкой по способу 1 и II необходимо протравить поверхность металла. Попадание Mg(N0g)2 в хромовокислую ванну или добавка в нее сернокислых солей тормозят обработку поверхности магния и ухудшают сцепление с краской. Пленка при обработке по способам III и IV несколько толще, чем получаемая при обработке по способам I и II, и хорошее сцепление с краской обеспечивается тем, что она пропитывает относительно пористую хроматную пленку. [c.935]

    В сочетании с электрохимической катодной заш,итой, которая весьма экономична в комбинации с высококачественным защитным покрытием. Электрохимическая катодная защита осуществляется в двух вариантах а) с использованием внешних источников тока (аккумуляторных батарей, селеновых выпрямителей, генераторов постоянного тока) б) с применением протекторов из металлов с электродным потенциалом более отрицательным, чем у стали (магний, цинк, алюминий или их сплавы). [c.394]

    Как отмечалось выше, гальванические элементы являются источниками электричества, которое получается в результате освобождения энергии при протекании самопроизвольной химической реакции. В противоположность этому сушествуют электролитические ячейки, в которых в результате затраты электрической энергии происходят химические превращения. Эти превращения, представляю-ш ие собой реакции между ионами и электронами, приводят к разложению электролитов, находящихся в растворе или в виде расплава. Например, при пропускаиии постоянного тока через раствор СиСЬ на электроде, к которому подводятся электроны (катод), происходит реакция u +-f 2е = Си (т), т. е. выделяется металлическая медь. На электроде, с которого электроны отводятся (анод), разряжаются ионы хлора С1-, т.е. идет реакция 2С1- = СЬ(г)+2е, и выделяются пузырьки газообразного хлора. Таким образом, на катоде происходят реакции восстановления, а на аноде — окисления. Подобные процессы называются электролизом. Электролиз имеет важное практическое значение. С его помощью получают из водных растворов многие металлы, например медь, никель и др. Такие металлы, как алюминий, магний, кальций, получают электролизом расплавленных солей или их смесей. Разрабатываются способы получения железа электролизом из его руд (.4. Б. Сучков). При помощи электролиза наносят защитные покрытия более благородных металлов на менее благородные (хромирование и никелирование железа). В отличие от работы гальванического элемента реакции, протекающие при электролизе, происходят в условиях, да- [c.133]

    Хорошие результаты дает применение трубопровода из алюминиево-магние-вых сплавов для транспортировки сернистых нефтей и газов. В ряде случаев (при прокладке во влажных щелочных грунтах) трубопроводы из алюминиевых силавов необходимо изолировать. Однако, изоляции такого трубопровода в 2—3 раза дешевле соответствующего защитного покрытия на стальных трубах, Для строительства газопроводов можно использовать алюмпииево-магни-ево-цинковый сплав марки В-92. Толщина стенки трубы из этого сплава ие больше, чем у стальных, при расчете на давление 50 кГ1см . [c.188]

    Для предотвращения коррозии, вызванной сернистыми соединениями нефти, аппаратуру изготовляют из специальных металлов или сплавов, а также применяют защитные покрытия. В нефтях, поступающих на переработку, содержание хлоридов должно составлять 50 мг1л. Практика работы заводов показывает, что даже при таком содержании солей, особенно в условиях комбинированной коррозии, все же наблюдается разъедание аппаратуры, особенно конденсационной системы. Для предотвращения этого применяется защелачивание нефти каустической содой или смесью ее с кальцинированной содой путем подкачки раствора щелочи в нефть перед ее переработкой. При защелачивании хлориды кальция и магния переводятся в термически устойчивый хлорид натрия по реакции [c.108]

    ТРАВЛЁННЕ — химическая и электрохимическая обработка поверхиости твердых материалов. Используется для удаления загрязнений, окислов (в частности, ржавчины), окалины, для выявления структуры материала (металла, минерала) или придания поверхности желаемой микрогеометрии, для снятия нарушенного мех. обработкой поверхностного слоя и получения структурно и химически однородной поверхностп при произ-ве полупроводниковых материалов, для придания матового вида стеклу и др. Часто применяется перед нанесением защитных покрытий, эмалированием, лужением и пайкой. Химическое Т. стали, меди, цинка и магния осуществляют в водных растворах серной, соляной или азотной кислоты стекла — в плавиковой кислоте алюминия — в водных растворах едких щелочей нержавеющих и жаростойких сталей, титана — в щелочных расплавах. Из-за неоднородности поверхиости (наличия пор, трещин и т. п.) химическое Т. металлов сопровождается действием гальванических микроэлементов. Электрохимическое Т. проводят в тех же средах, а также в растворах солен с применением катодного, анодного или переменного тока. При Т. на поверхности происходят хим. взаимодействие окисной пленки или материала основы с раствором или расплавом электрохим. растворение металла (на анодных участках микроэлементов или нри анодном травлении) электрохим. выделение водорода (на катодных участках микроэлементов или при катодном травлении) электрохим. выделение кислорода (при анодном травлении). Хим. очистке поверхности способствуют разрыхление и отрыв окалины под мех. воздействием [c.582]

    Хлориды щелочных металлов сильно ухудшают способность цинка к образованию защитных покрытий. Они проникают через уже образовавшиеся пленки и вызывают прогрессирующую совре менем коррозию со скоростями 1,8—0,25 г м сутки) в растворах Na l с концентрациями от 0,5 г/л до насыщения и 1,8— 0,2 г сутки)—в растворах КС1 аналогичной концентрации при 12,5° С [63]. Незначительные количества солей магния в растворе хлорида натрия ослабляют коррозию благодаря образованию защитных пленок [64, 65]. [c.228]

    Предложенный новый мокрый способ нанесения защитного покрытия на основе водной суспензии с микротальком и микрогидроокисью магния сокращает расход магния на 60—80%, и общая годовая экономия от нанесения защитного покрытия этим способом составляет около 430 тыс. рублей. [c.45]

    Окись магния для термостоЁкого защитного покрытия электротехнических сталей — аморфный порошок, при хранении на воздухе поглощает влагу и двуокись углерода. [c.76]

    Цемент и бетон, долго находящиеся в сыром состоянии, могут вызывать определенную поверхностную коррозию, но и она быстро уменьшается со временем и не оказывает существенного влияния на прочность изделий. При заделке алюминия в бетон рекомендуется наносить битумное защитное покрытие, чтобы избежать растрескивания бетона, вызванного напряжениями, возникающими при увеличении объема продуктов коррозии. Штукатурка обычно менее агрессивна, чем портландцемент. Во влажных условиях незначительная к( ррозия алюминия может происходить при контакте с более рыхлым строительным камнем и кирпичом, а твердый камень (папример, гранит) инертен. Агрессивность строительного камня и кирпича, как и в случае почвенной коррозии среды, определяется природой вымываемых (выщелачиваемых) компонентов. Незащищенный алюминий может удовлетворительно ис-иользопаться в контакте со сборным железобетоном, который, как правило, не агрессивен по отношению к алюминию. Наоборот, материалы, содержащие хлорокись магния (используемые для изготовления [c.89]

    Рассматривая коррозию магния и его сплавов, важно проанализировать и методы, используемые для оценки коррозионных свойств, а особенно так называемые ускоренные испытания. Испытания путем полного погружения в соленую воду или путем периодического обрызгивания образцов морской водой пригодны для определения коррозионной стойкости магниевых сплавов только в этих конкретных условиях и не позволяют оценить стойкость в каких-либо других средах. Экстраполяция результатов таких испытаний на менее агрессивные условия неправомерна, более того, таким способом вряд ли можно оценивать даже эффективность защитных мероприятий. Причина заключается в том, что коррозионное поведение непосредственно связано с формированием на металле нерастворимых пленок. В самом хлоридном растворе стабильные нерастворимые пленки не образуются, более того, никакие ранее сформировавшиеся в результате химических реакций пленки не являются непроницаемыми для хлор-иоиа. Ионы хлора сравнительно легко проникают даже через имеющиеся защитные покрытия, а пленки органических красок я лаков подвергаются осмосу и разбухают, что может быть очень далеко от условий обычной эксплуатации. За исключением спе-цального определения поведения материалов в разбавленных растворах хлоридов, ускоренные испытания такого типа недопустимы, и их результаты могут ввести в заблуждение. [c.129]

    В табл. А не указаны три металла цинк, кадмий и олово, что объясняется следующими соображениями. Цинк, подобно магнию, применяется для многих изделий, которые не подвергаются воздействию сильно агрессивных сред и не требуют поэтому специальной химической стойкости. Цинк и кадмий применяются как защитные покрытия на железе и стали (редко — на других металлах), но только в тех случаях, когда изделия подвергаются воздействию не сильно агрессивных сред. Олово, подобно цинку и кадмию, применяется в качестве защитного покрытия для других металлов, а также для труб для дестиллированной воды и газированных напитков кроме того, оно применяется в виде листов и фольги. Вообще же олово не является стойким материалом в средах, с которыми имеет дело химическая промышленность. [c.793]


Смотреть страницы где упоминается термин Защитные покрытия магнии: [c.148]    [c.148]    [c.160]    [c.247]    [c.130]    [c.130]    [c.130]    [c.109]    [c.384]    [c.725]    [c.50]    [c.191]    [c.105]    [c.144]    [c.65]    [c.468]   
Коррозия и защита от коррозии (1966) -- [ c.658 ]




ПОИСК





Смотрите так же термины и статьи:

Защитные магнии



© 2024 chem21.info Реклама на сайте