Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые вещества

    В состав нуклеопротеидов входят простые белки (гистоны и протамины) и нуклеиновые кислоты. Нуклеиновые кислоты — высокомолекулярные соединения, имеющие очень большой молекулярный вес (от сотен тысяч до нескольких миллионов). Они принимают участие в процессах биосинтеза белка. При гидролизе нуклеиновые вещества расщепляются на фосфорную кислоту, углеводы и органические азотсодержащие основания. [c.214]


    Глюкозиды чрезвычайно распространены как в животном, так и особенно в растительном мире. При гидролизе природных глюкозидов получаются моносахариды и олигосахариды, причем последние образуются гораздо чаще. Многие из глюкозидов дают при гидролизе -глюкозу, но нередко встречаются глюкозиды фруктозы, галактозы, маннозы, а также пентоз — ксилозы, арабинозы, рибозы (нуклеиновые вещества) и метилпентоз. [c.602]

    Еще ничего не было сказано о самых важных составных частях живых тканей — белках и нуклеиновых кислотах, которые управляют всей химией организма, передают детям свойства родителей и составляют главное отличие живой ткани от неживого вещества. [c.205]

    На гидролизном заводе вырабатывается в год 3900 т кормовых дрожжей с массовой долей влаги 0,10, сырого протеина 0,60, липидов 0,05, углеводов 0,015, минеральных веществ 0,08, нуклеиновых кислот 0,06. Определить массу протеина, липидов и нуклеиновых кислот, которые накапливаются дрожжами, производимыми заводом за сутки, при непрерывной работе. [c.288]

    Для большинства веществ частицы представляют собой молекулы. Молекула — наименьшая частица вещества, обладающая его химическими свойствами. Молекулы в свою очередь состоят из атомов. Атом — наименьшая частица элемента, обладающая его химическими свойствами. В состав молекулы может входить раз личное число атомов. Так, молекулы благородных газов одно-атомны, молекулы таких веществ, как водород, азот,— двухатомны, воды — трехатомны и т. д. Молекулы наиболее сложных веществ — высших белков и нуклеиновых кислот — построены из такого количества атомов, которое измеряется сотнями тысяч. При этом атомы могут соединяться друг с другом не только в различных соотношениях, но и различным образом. Поэтому при сравнительно небольшом числе химических элементов, число различных веществ очень велико. [c.20]

    Водородная связь служит причиной некоторых важных особенностей воды — вещества, играющего огромную роль в процессах, протекающих в живой и неживой природе. Она в значительной мере определяет свойства и таких биологически важных веществ как белки и нуклеиновые кислоты. [c.156]

    Полиэлектролитами называют макромолекулы с большим числом групп, которые электролитически диссоциируют в водном растворе. Многочисленные физиологически важные вещества (например, белки, нуклеиновые кислоты), а также некоторые синтетические вещества (например, полиакриловая кислота) являются полиэлектролитами. [c.255]


    Изучение деструкции биологических полимеров — белков, нуклеиновых кислот, целлюлозы и др.— является одним из важнейших методов исследования состава и строения этих полимеров. Деструкция полимеров используется для получения мономеров из природных полимеров, например для получения аминокислот и нуклеотидов. Наконец, изучение кинетики и механизма деструкции биологических полимеров под действием ферментов представляет большой интерес в связи с тем, что эти процессы являются важными звеньями обмена веществ в живых организмах. [c.372]

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]

    Биополимеры - природные высокомолекулярные соединения, из которых построены клетки живых организмов и межклеточное вещество, связывающее их между собой (высокомолекулярные углеводы, белки, нуклеиновые кислоты и др.). [c.396]

    Вещества клеток и органелл. Белки,углеводы, нуклеиновые кислоты [c.8]

    Частичный гидролиз нуклеиновых кислот дал возмол ность углубить наши знания о строении этих веществ. При таком гидролизе образуются следующие продукты распада  [c.1045]

    Из диазинов особенно важны пиримидин и его производные. Пиримидиновое кольцо входит в состав многих биологически важных веществ (нуклеиновых кислот, некоторых витаминов, лекарственных веществ и т. д.). Кислородные производные пиримидина — урацил, тимин и цитозин известны под общим названием пиримидиновых оснований  [c.370]

    Многие вещества входят в живые организмы в форме макромолекул, полимеров с высокой молекулярной массой. Биополимеры можно подразделить на три большие класса белки, углеводы и нуклеиновые кислоты. В пище животных белки, углеводы и молекулы из класса соединений, называемого жирами, служат важнейшими источниками энергии. Кроме того, полимерные углеводы выполняют функции важнейших строительных материалов, придающих форму растительным организмам, а [c.443]

    Приведите конкретный пример каждого из следующих веществ а) дисахарид б) сахар, входящий в состав нуклеиновых кислот  [c.470]

    В составе органических оснований азот входит в структуры важнейших компонентов клеточного вещества — нуклеиновых кислот. Азот также является составной частью многих других биологически важных веществ растительного и животного мира — ферментов, гормонов, витаминов. [c.88]

    Состав веществ тела животных, растений и микроорганизмов в принципе отличается мало. Белки всех живых клеток состоят из 20 главных аминокислот. Важнейшие компоненты тела — нуклеиновые кислоты — построены по одному принципу и из одинаковых для всех живых существ составных частей. Различия между типами и видами клеток состоят в деталях строения — в последовательности и взаиморасположении видоспецифичных макромолекул или протоплазменных структур и частных особенностях обмена веществ. [c.256]

    МОНОМОЛЕКУЛЯРНЫЙ СЛОЙ — слой толщиной в одну молекулу, образуется на границе раздела фаз в результате адсорбции или нанесения вещества при помощи легкого растворителя и поверхностной диффузии. Нанесение М. с. имеет большое практическое значение для снижения испарения воды, изучения строения нуклеиновых кислот, моделирования процессов проникновения отравляющих веществ и многих других явлений. [c.164]

    НУКЛЕОТИДЫ — сложные органические вещества, природные биологически активные соединения, распространены в животных, растительных тканях и микроорганизмах как в свободном состоянии, так и в составе различных соединений (нуклеиновых кислот, некоторых коферментов и витаминов). Н. состоят из остатков фосфорной кислоты, углевода (рибозы или дезоксирибозы) и азотистого основания (нуклеозида). Играют огромную роль в процессах обмена веществ и энергии живых организмов. [c.177]


    ПРОТЕИДЫ — соединения биологического происхождения, сложные белки, представляющие собой соединения белков с другими веществ.з 1и, например, с углеводами, нуклеиновыми кислотами и др. [c.205]

    Методом электрофореза можно разделять белки, нуклеиновые кислоты, антибиотики, смеси лекарственных веществ в лекарственных формах. Электрофорез применяют для определения чистоты лекарственных препаратов. [c.364]

    Фракционирование методом гель-проникающей хроматографии (ГПХ) основано на применении принципа молекулярного сита, т. е. разделение молекул происходит только по размерам и не зависит от химической природы компонентов. Это свойство отличает метод ГПХ от всех других методов, основанных на растворимости полимеров. Возможность разделения только по размерам особенно важна для сополимеров и полимерных веществ биологического происхождения (белков, нуклеиновых кислот и др.). [c.96]

    В проблеме фотосинтеза, кроме изучения основных собственно ферментных превращений, имеется ряд других сложных и интересных вопросов. Так, имеет особое значение структурная организация фотосинтетической системы, которая влияет на степень ее активности и качественную направленность. Важен вопрос о качестве и разнообразии образующихся при фотосинтезе веществ здесь особый интерес представляет образование азотсодержащих продуктов, а также нуклеиновых веществ и липопро-теидов, как компонентов самого фотосинтетического аппарата. Важен также вопрос о связи и сопряженности фотосинтеза с иными биохимическими процессами и системами организмов. Имеется и много других задач, еще далеко не разрешенных, но изучаемых сейчас всем фронтом науки. [c.334]

    Фотосинтез требуст наличия хлорофилла и сложной системы ферментов, других белков и нуклеиновых кислот. Эти компоненты образуются в основном из питательных веществ почвы. Минеральные питательные вещества, такие, как нитраты (NO3 ), фосфаты (РОц ), магний (Mg +) и калий (К+), извлекаются из почвы корнями. Фосфаты становятся частью молекул АТФ (аденозинтрифосфат см. гл, VII, разд. А.7), запасающих энергию, ДНК и РНК (см. гл. VII, А.6) и других фосфорсодержащих молекул. Ион магния -ключевой компонент хлорофилла, который необходим для фотосинтеза. [c.513]

    Генезис нефтяных азотсодержащих веществ — один из сложнейших вопросов современной теории происхождения нефти. В большинстве работ приводятся доводы в пользу того, что азотистые компоненты нефти образовались иа тех же нефтематеринских веществ, что и другие классы соединений, а не приобретены нефтью в ходе ее миграции и аккумуляции. Ни для одного из индивидуальных АС, обнаруженных в нефти, пока не найдено достоверного биологического предшественника, хотя и высказывались предположения об их образовании из белковых веществ [455], нуклеиновых оснований (пуринов, пиримидинов) [683], растительных алкалоидов [110, 514, 755, 756]. Л. Снайдер [110, 756] связывает наблюдаемые особенности строения нефтяных бензокарбазолов (ангулярное, но не линейное сочленение колец) со структурой типичных растительных алкалоидов — ибогаина (XXI) и аспидоспермина (XXII), предположительно преобразующихся после захоронения по следующим схемам  [c.137]

    К настоящему времепм удалось промоделировать в основном только гидролитические ферментативные процессы, но вполне реально, что в скором будущем станет возможным ступенчатый синтез макромолекул, таких, скажем, как белки и нуклеиновые кислоты. Например, если вещества со структурой, напоминающей рецепторы для лекарственных препаратов, удастся включить в синтетические мембраны, то станет возможным изучение этих рецепторов без каких-либо осложнений иммунологического и токсикологического характера. Кроме того, способность мембран разделять заряженные частицы может найти промышленное применение в системах для накопления энергии или производства водорода. [c.265]

    Нуклеиновые кислоты (полинуклеотиды). Нуклеиновые кислоты представляют собой высокомолекулярные соединения, построенные из большого числа мононуклеотидных остатков. Об этом свидетельствуют, например, их физические свойства, совпадающие со свойствами коллоидных веществ. [c.1048]

    Особую группу высокомолекулярных соединений представляют белки и нуклеиновые кислоты. Они играют основную роль во всех жизненных процессах и являются теми веществами, с которыми неразрывно связано само понятие жизни. Белки относятся к так называемым высокомолекулярным электролитам или полиэлектроли-там. Наличие свободных групп NH2 и СООН сообщает белкам амфотерные свойства (опыты 87, 89). [c.176]

    Согласно современным представлениям протоплазму следует рассматривать как сложную коллоидную систему, обладающую всеми свойствами и признаками макромолекул в растворе. Исследования, проведенные за последние годы, убедительно показали, что протоплазма построена по типу сложных коацерватов. Как уже отмечалось, белки протоплазмы представляют собой сложные соединения более простых белков с нуклеиновыми кислотами, углеводами, высшими жирными кислотами и т. д. Именно при соединении с белком эти вещества образуют сложные коацерваты, нз которых большое значение имеют так называемые ВЕ1утриком-плексные коацерваты. [c.401]

    Установлено, что клетки всех микроорганизмов сходны но химическому составу и содержат одни и те же типы макромолекул белкн, нуклеиновые кислоты, полисахариды, липнды. В биомассе микроорганизмов обнаружены органогены углерод, азот, кислород и водород, количественное содержание которых составляет 90— 97% на сухое вещество. На долю других, также исключительно важных для жизнедеятельности микроорганизмов элементов — Р, 5, К, Са, М , Ре, Nя, С1, Мп и т. п. — приходится 3—10% состава клеточного вещества. [c.259]

    В настоящее время перечисленными методами структурного анализа изучено строение многих неорганических, органических и элементоорганических веществ, имеющих практическое и научное значение. Большие успехи достигнуты в расшифрювке структур биологически важных веществ (нуклеиновых кислот, белков). [c.160]

    ПОЛИЭФИРЫ (простые и сложные). П. простые — высокомолекулярные соединения, макромолекулы которых содержат эфирные связи. Наибольшее значение среди простых П. имеют полиокси-метилен, пептон, эпоксидные смолы. Они используются в прои. шодстве конструкционных материалов, в качестве пленкообразующих веществ, эмульгаторов, диэлектриков и др. Сложные П.— высокомолекулярные соединения, получаемые поликонденсацией многоосновных кислот или их ангидридов с многоатомными спиртами. К П. с. относятся такие природные соединения, как нуклеиновые кислоты, даммар, шеллак, акароид, янтарь и др. К синтетическим П. с. относятся смолы алкидные, полиэтилентерефталат, полиакрилаты, поликарбонаты и др. Они широко используются в качестве пленкообразующих веществ, синтетических волокон, в электро- и радиотехнике, для изготовления высококачественных электроизоляционных материалов, как вяжущее в производстве стеклопластиков, <аучуков и др. [c.200]

    ПУРИНОВЫЕ ОСНОВАНИЯ - бесцветные кристаллические вещества с высокой температурой плавления, малорастворимы в воде. П. о.— органические природные соединения, производные пурина, входят в состав нуклеиновых кислот, нуклеотидов, нуклеозидов и некоторых коферментов. Свободные П. о. найдены во многих растениях, в печени, крови, молоке, камнях мочевого пузыря, в рыбьей чешуе и др. Наиболее распространены аденин, гуанин, гипоксаптин. Конечным продуктом пуринового обмена у большинства животных является мочевая кислота. Химические свойства П. о. определяются, главным образом, заместителями в пуриновом ядре. П. о. получают из нуклеиновых кислот, нуклеотидов, нуклеозидов, а также синтетически. [c.206]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]

    Цепными реакциями помимо реакций с галогенами и процессов термического распада являются многие реакции окисления органических и неорганических веществ кислородом, а также процессы полимеризации мономеров, содержащих двойные связи. Например, полимеризация амида акриловой кислоты СН 2 = СН — ONHg, которая в последние годы нашла широкое применение в биохимии для получения полиакриламидных гелей, позволяющих эффективно проводить разделение сложных смесей белков и нуклеиновых кислот. [c.317]


Смотреть страницы где упоминается термин Нуклеиновые вещества: [c.520]    [c.634]    [c.634]    [c.311]    [c.6]    [c.266]    [c.268]    [c.57]    [c.191]    [c.4]    [c.15]   
Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.602 ]

Основные начала органической химии Том 2 1957 (1957) -- [ c.634 , c.635 ]

Основные начала органической химии Том 2 1958 (1958) -- [ c.634 , c.635 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты и белки . 24.4. Нуклеиновые кислоты. Химия наследственности . 24.5. Процессы обмена веществ. Ферменты и их действие

Вещества, влияющие на нуклеиновые кислоты

Штернберг. О возможном участии ростовых веществ и нуклеиновых кислотв механизме действия фитохрома



© 2025 chem21.info Реклама на сайте