Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вещества, влияющие на нуклеиновые кислоты

    В свете современных представлений о метаболизме в растительной клетке местом действия физиологически активных веществ могут быть а) ферменты и ферментные системы б) белки, липиды, нуклеиновые кислоты, участвующие в молекулярной организации структур цитоплазмы и ядра в) информационные и транспортные рибонуклеиновые кислоты г) дезоксирибонуклеиновая кислота. Надо полагать, что эффект, или глубина , воздействия зависит от того, на что и в какой мере влияет то или иное физиологически активное вещество. В одних случаях это действие ограничивается лишь временным изменением интенсивности каких-либо ферментативных реакций, в других — [c.5]


    Пространственное строение решающим образом влияет на свойства и биологические функции органических веществ, участвующих в процессах жизнедеятельности. Большинство таких веществ оптически активны и встречаются в природе обычно в одной из антиподных форм это относится к белкам и образующим их аминокислотам, нуклеиновым кислотам, сахарам, стероидным гормонам, природным оксикислотам, ферментам, витаминам и др. Свойства природного каучука тесно связаны с определенной геометрической конфигурацией его полимерной цепи. Еще большее значение имеет в рассматриваемой области конформация, в особенности если речь идет о таких полимерах, как белки и нуклеиновые кислоты. Ни один вопрос биохимии не может быть решен на современном уровне без тщательного учета стереохимических факторов. [c.623]

    Фитопатогенные вирусы представляют собой нуклео-протеиды, состоящие из белков и нуклеиновых кислот. Размеры вирусных частиц чрезвычайно малы, изучать и измерять их можно лишь под электронным микроскопом. Частицы имеют палочковидную, шаровидную или нитевидную форму. Многие вирусы переходят в кристаллическую форму. Внешние условия в сильной степени влияют на развитие вирусов. По отношению к ним различают вирусы стойкие и нестойкие. Стойкие вирусы выдерживают высушивание, сильное нагревание, воздействие света и химических веществ. Нестойкие вирусы погибают при неблагоприятных условиях. [c.69]

    Биологическое действие. Витамин С (аскорбиновая кислота) участвует в окислительно-восстановительных реакциях и передаче водорода при аэробном энергообразовании. Он влияет на синтез белка коллагена, способствующего сохранению целостности опорных тканей (хрящей и костей) и нормальной проницаемости стенок сосудов. Активность многих ферментов зависит от присутствия аскорбиновой кислоты. Прежде всего это относится к ферментам, участвующим в обмене аминокислот и нуклеиновых кислот, биосинтезе белков в мышцах, что определяет анаболическое действие витамина С. Этот витамин стимулирует процессы кроветворения, улучшая всасывание железа из кишечника, а также улучшает защитную функцию печени, что повышает устойчивость организма к различным токсическим веществам и способствует более быстрому восстановлению организма после больших физических нагрузок. Витамин С влияет на синтез гормонов надпочечников, в том числе кортикостероидов, что улучшает приспособительные реакции организма, повышает устойчивость организма к инфекционным и простудным заболеваниям. Благодаря таким биологическим функциям он широко применяется в медицине и спорте. [c.119]


    Ферменты, как и все другие протеины, находятся в природных условиях в составе сложных биологических систем, в сложных смесях веществ. В системах, входящих в состав клеток микроорганизмов, растений, животных тканей разнообразие белков очень велико. Главную часть их составляют ферменты. Большинство их присутствует в весьма небольших количествах. Кроме того, в смесях имеются углеводы, липиды, нуклеиновые кислоты и другие органические вещества, а также различные минеральные ионы. Большинство компонентов способно образовывать с белками соединения различной прочности или находиться в свободном состоянии. Многие из этих веществ, особенно сопутствующие белки, могут оказывать влияние на активность ферментов, влияя либо непосредственно на них, либо на субстрат или продукты реакции. В биологических системах действие различных ферментов часто бывает взаимосвязанным. Чтобы изучить и провести необходимую реакцию (технологический процесс), желательно располагать данным катализатором в очищенном виде. [c.138]

    В последнее время появились также работы, посвященные действию поверхностно-активных веществ на микроорганизмы, изучению связи между строением и функцией ПАВ [181—190]. Как свидетельствуют эти исследования, поверхностно-активные вещества взаимодействуют с клеточной стенкой, изменяя ее проницаемость и вызывая утечку жизненно важных составных частей протоплазмы (различных аминокислот и производных нуклеиновых кислот) вследствие нарушения осмотического равновесия. Поверхностно-активные вещества влияют также на взаимодействие ферментов и на их локализацию внутри клетки. В зависимости от pH среды в присутствии ПАВ наблюдается либо повышение активности ферментов, либо угнетение их каталитического действия. [c.85]

    При помощи простого и дешевого оборудования использование электрофореза на бумаге позволяет разделять редкоземельные элементы, белки, нуклеиновые кислоты и другие соединения, входящие в состав живых и растительных организмов, также разделять смеси радиоактивных веществ. На движение частиц в электрическом поле влияют такие факторы, как знак и величина ионов, или коллоидных частиц, присутствие комплексообразователей, изменяющих тип и степень диссоциации вещества. [c.313]

    Как и при интерпретации влияния солей на водные растворы, основное внимание следует обращать на изменение свободной энергии системы при добавлении неполярных веществ к водным растворам интерпретация этого явления непосредственно с точки зрения структурной модели может оказаться ошибочной. Так, структурная модель дает приемлемое объяснение солюбилизации гидрофобных соединений под действием спиртов алкилзамещенных аминов и мочевин. Если одно растворенное вещество увеличивает структурированность раствора, можно было бы ожидать, что оно должно облегчать введение молекул другого подобного вещества. С другой стороны, структурирующая способность вещества совершенно необязательна для того, чтобы оно было в состоянии солюбилизировать гидрофобные соединения в воде. Уже отмечалось, что один из возможных механизмов денатурации белков и нуклеиновых кислот под действием мочевины заключается в стабилизации гидрофобных боковых цепей аминокислот и оснований нуклеиновых кислот при увеличении их контакта с растворителем, что проявляется в увеличении растворимости и уменьшении коэффициента активности этих групп в присутствии мочевины [31, 32, 35]. Спирты, ацетон и подобные им вещества разрушают гидрофобные связи и способствуют денатурации аналогичным образом. Однако мочевина, вероятно, не обладает структурирующим действием, по крайней мере в том смысле, как это понимается для неполярных молекул мочевина очень слабо влияет на большинство свойств воды и либо практически не изменяет структуру воды, либо, из данных по поглощению ультразвука, несколько ее разрушает [85]. Данные по энтальпии и теплоемкости растворов веществ с гидрофобными группами, а также исследования спектра ультразвуковой релаксации полиэтиленгликоля в воде и растворах мочевины указывают на то, что энергетически более благоприятное взаимодействие гидрофобных групп с мочевиной, чем с водой, связано с уменьшением структурированности воды вокруг гидрофобных групп [85, 86]. Таким образом, разрушение гидрофобных связей под действием мочевины или спирта нельзя объяснить одним и тем же механизмом с точки зрения структуры растворителя, хотя по свободной энергии эффекты соединений этих двух типов одинаковы. Возможно, что мочевина создает более благоприятное окружение для гидрофобных групп, находящихся в пустотах струк- [c.328]


    Изоэлектрическая точка (ИЭТ) растений является сложным био-физико-химическим показателем, тесно связанным с протекающими в протоплазме процессами обмена веществ и изменениями в ее структуре. ИЭТ — в значительной степени подвижная величина. То или иное смещение ИЭТ клеточных структур зависит от ряда причин прежде всего от состава белков и нуклеиновых кислот и их количественного соотношения, от физико-химического состояния веществ и характера их связи. На положение ИЭТ влияют условия окружающей среды и характер внутриклеточного метаболизма. [c.189]

    Фосфор является одним из важнейших биогенных элементов и входит в состав нуклеиновых кислот, сахарофосфатов, клеточных мембран, ферментов, костной ткани. Он активно участвует в процессах обмена веществ и синтеза белка, определяет энергетику клетки, активно влияет на рост растений, концентрируясь в семенах и точках роста. [c.20]

    Использование антимикробных агентов для подавления развития болезнетворных микроорганизмов началось, в основном, только в нашем столетии, и наиболее значительные результаты были достигнуты лишь в конце 30-х годов. Это самьтй большой класс препаратов, производимых фармацевтической промышленностью. За последние годы получены новые данные, касающиеся механизмов действия антимикробных средств на бактериальную клетку. Установлено, что эти соединения могут подавлять синтез белков или нуклеиновых кислот в клетках, нарушать доставку и потребле гае АТФ и тем самым вызывать глубокие изменегшя биологической активности клетки, влиять на функцию мембран, подавлять синтез микромолекул на уровне полимеризации и т,д, В некоторых случаях принцип избирательности действия антимикробных средств именно на микробную клетку в полной мере не срабатывает, и эти вещества могут оказывать отрицательное влияние и на макроорганизм. Поэтому при использовании таких соединений в офтальмологии следует проявлять особую осторожность [30], [c.686]

    Ткани живых и мертвых растений составляют основной компонент почвы и являются главным источником органического вещества для биодеградации. Основные компоненты растений, которые попадают в почву, — это целлюлоза (40%), гемицеллюлоза (30%) и лигнин (25%), остальное приходится на белки, жиры, нуклеиновые кислоты и т. д. Эти вещества в конце концов разрущаются под действием биологических и химических процессов с образованием множества простых и сложных химических соединений, часть из которых неблагоприятно влияет на рост растений. Первоначально исследования были в основном связаны с изучением возможного влияния растительных отходов и продуктов их распада на плодородие почвы. Пикеринг одним из первых обнаружил, что продукты распада токсичны для растений. Впоследствии многие исследователи подтвердили н расширили эти данные. В своем превосходном обзоре Патрик с сотр. 485] обобщили эти ранние исследования по определению и испытанию фитотоксинов, их специфическому действию на растения и специфичности отдельных фитотоксинов по отношению к определенным видам растений. Они установили, что пшеничная солома, оставленная на поверхности земли, иногда вызывает снижение урожая при следующем посеве пшеницы. Было показано, что этот негативный эффект частично связан с фитотоксичными веществами, образующимися при гниении растительных остатков [486, 487]. Более того, водные кислотные экстракты соломы злаков обладали умеренной ростоподавляющей активностью по отношению к корням и побегам пшеницы, кукурузы и сорго [488]. В Австралии Кимбер [489] обнаружил краткосрочное влияние гниющей пшеничной соломы на прорастание зерен пшеницы и овса. Он отметил, что в асептических условиях, исключающих влияние патогенной микрофлоры, степень ингибирования зависит от времени гниения. В ходе эксперимента измерялся рост корней и побегов в течение различных промежутков времени. Начальный рост корней при проращивании [c.258]

    Как можно искусственно приостановить митоз, не умерщвляя при этом клетку Мы знаем для этого несколько способов. Один из них — это подавление синтеза нуклеиновых кислот хромосом. Именно это происходит при воздействии на клетки малых доз рентгеновых лучей или других видов ионизирующего излучения, т. е. таких доз, от которых они обычно не погибают. Большие дозы облучения останавливают митоз, разрушая хромосомы. Насколько нам известно, облучение влияет на клетку, воздействуя главным образом на процесс образования и на целостность хромосом. Химические вещества, обладающие сходным действием, называются ра-диомиметическими, что означает имитирующие действие облучения . В то же время ионизирующее излучение оказывает, по-видимому, лишь незначительное действие на митотический аппарат (если не считать хромосом), а некоторые химические вещества, напротив, бывают в этом отношении весьма активны. Такие вещества растительного происхождения, как, например, производные колхицина, тормозят образование веретена митоза, но не влияют на хромосомы. Хромосомы проходят стадии деления, но не могут разойтись, так как нет митотического аппарата. В результате образуется клетка с двойным набором хромосом. Такие антимитотические агенты облегчают состояние больных при раке, хотя и не излечивают болезнь. Их применяют и в тех случаях, когда хотят вырастить организм, например какую-нибудь продовольственную культуру, с двойным набором хромосом. Само собой разумеется, что сознательное управление митозом будет возможно лишь тогда, когда МЫ поймем, что такое митоз, [c.213]

    Теперь рассмотрим молекулы, обладающие значительным общим дипольным моментом или локальнг.тми диполями в заместителях, например красители или основания нуклеиновых кислот. В большинстве случаев взаимодействие этих диполей с водой не дает достаточного выигрыша энергии для преодоления неблагоприятной свободной энергии образования полост , так что, как и в случае неполярных веществ, растворимость этих соединений невелика. Однако существуют различия п ориентации дюлекул воды вокруг растворенного вещества, так как полярные группы влияют на окружающие дюлекулы воды. В предыдущей главе отмечалось, что сравнительно слабые электрические поля вокруг ионов средних раздхеров или за пределами первой [c.319]

    Высокая монохроматичность лазерного излучения позволяет осуществлять избирательное возбуждение определенных колебательных подуровней в молекулах. Прежде всего это влияет на энергетически-конформаци-онное состояние отдельных участков макромолекул белков и нуклеиновых кислот. В литературе описывается лазерная активация каталазы, сопряжения дыхания с фосфорилированием, иммунологических реакций. Следует, однако, заметить, что вопрос о биологически значимом специфичном действии лазерного излучения и его связи с первичными механизмами взаимодействия света с веществом еще очень далек от сколько-нибудь однозначного разрешения. Очевидно также, что подобная специфика лазерного воздействия на биологические процессы будет проявляться прежде всего при относительно слабых мощностях, не приводящих к глубокой термической деструкции биосубстрата. [c.363]

    Действие антибиотиков как поверхностно-активных веществ может вызывать диссоциацию белка с отделением от него про-стетических групп или нуклеиновых кислот. Такие антибиотики могут также денатурировать белки и, следовательно, непосредственно влиять на энзиматические системы, связанные с клеточной стенкой (инвертазы, фосфатазы, различные дегидрогеназы, цитохромные системы). [c.416]

    Щества (табл. 10), почти наполовину сокращается содержание большинства аминокислот (табл. И). Количество нуклеиновых кислот уменьшается до 6,3%, а содержание ПОМК возрастает до 22%, это почти в 10 раз превышает его исходную концентрацию. Увеличивается также синтез липидов в клетках и углеводов. В связи с перестройкой синтеза биохимических соединений у водородных бактерий в условиях дефицита азота изменяется характер поступления остальных биогенных элементов в клетки серы, фосфора, калия и магния (см. табл. 10). В большей степени затрагивается обмен калия и магния, что вполне объяснимо, так как известно непосредственное участие этих элементов в синтезе белковых веществ. Снижение внутриклеточной концентрации серы связано с уменьшением количества серосодержащих аминокислот в белке. Таким образом, установлено, что условия азотного питания существенно влияют на физиолого-биохимические свойства бактерий Al aligenes eutrophus Z-1 причем биохимический синтез сдвигается в сторону [c.71]

    Все системы межклеточной регуляции — трофическая, гормональная, электрофизиологическая — тесно взаимосвязаны между собой. Например, ИУК индуцирует сдвиги в величине электропотенциала, а это в свою очередь оказывает влияние на транспорт вещества. Каждая из этих систем действует на клетки через системы внутриклеточной регуляции, т. е. изменяя функциональную активность ферментов и мембран, влияя на интенсивность и направленность синтеза нуклеиновых кислот и белков. Таким образом создается единая иерархическая система регуляции, определяющая взаимодействие всех частей растения. [c.51]

    Механизмы регуляции в живых организмах, в том числе и растениях, определяют направленность обмена веществ. Так, по отношению к неблагоприятным внешним факторам растения способны отвечать определенными состояниями (изменением температуры тела, интенсивности дыхания, скорости поглоп1,еиия элементов питания и т. д.). Явление саморегуляции становится возможным благодаря принципу обратной связи, когда продукт отдельно взятой реакции внутреннего или внешнего обмена веществ влияет на всю взаимосвязанную цепь реакций через ферменты (ферментная регуляция) или нуклеиновые кислоты (генная регуляция). [c.173]

    Под иммунитетом (от лат. ттип аз — освобождение, избавление от чего-либо) в биологии и медицине понимают комплекс реакций организма, направленных на сохранение его структурной и функциональной целостности при воздействии на организм генетически чужеродных веществ, как поступающих извне, так и образующихся внутри организма. Для поддержания и сохранения постоянства внутренней среды организма, так называемого гомеостаза, у позвоночных сформировалась специальная иммунная система, состоящая из лимфоидной ткани. К генетически чужеродным веществам относится огромное по разнообразию число биологически активных макромолекул, способных влиять на биологические процессы организма. Как правило, эти чужеродные вещества имеют органическое происхождение (белки, полисахариды и их комплексы, нуклеиновые кислоты) они получили название антигенов. Чужеродные вещества по своей структуре отличаются от собственных антигенных макромолекул, из которых состоит организм, так как последние генетически детерминированы, т.е. наследственно закреплены за каждым видом и индивидом. Именно в связи с этим чужеродные вещества, обладающие свойствами антигенов, способны нарушить в организме биохимические функции и процессы, приводящие к структурным и функциональным изменениям. [c.125]


Смотреть страницы где упоминается термин Вещества, влияющие на нуклеиновые кислоты: [c.257]    [c.218]    [c.129]   
Смотреть главы в:

Справочник биохимии -> Вещества, влияющие на нуклеиновые кислоты




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые вещества

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте