Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен диэлектрические свойства

    Производство полиэтилена. Полиэтилен—один из самых распространенных полимерных материалов, находящий широкое применение как в промышленности и сельском хозяйстве, так и в быту. Полиэтилен имеет уникальные физические и химические свойства температура плавления 100—125°С, устойчив к действию концентрированных щелочей и кислот, высокая-эластичность даже при низких температурах примерно минус 50—60Х, абсолютная негигроскопичность, очень высокие диэлектрические свойства и сравнительно малая газопроницаемость пленок. [c.319]


    В качестве примера исследуем течение смешиваемых материалов по рабочей поверхности многоступенчатого центробежного (ротационного) смесителя, использование которого весьма перспективно для смешения высокодисперсных твердых (порошковых) материалов с вязкими жидкостями [70]. Так, представляет интерес применение ротационных смесителей в производстве полиэтилена, где перерабатываются большие количества цветных пигментов и сажи, ввод которых в полиэтилен необходим, чтобы придать ему определенные потребительские свойства (различные цвета спектра, термостойкость, диэлектрические свойства и т. д.). [c.188]

    Полиэтилен является неполярным полимером, поэтому он имеет высокие показатели диэлектрических свойств, которые почти не зависят от температуры (в пределах от —80 до 100 °С) и влажности в широком диапазоне частот. [c.10]

    Прессовочные порошки специального назначения, текстолит, гетинакс, древеснослоистые пластики, пластикат кабельный, полистирол, полиэтилен Диэлектрические свойства Детали зажигания установок ТВЧ, электроустановок высокого напряжения, маслостойкие детали. Изоляция кабелей [c.212]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Полиэтилен, получающийся при низких давлениях, имеет большой молекулярный вес, более высокую температуру плавления, большую плотность и более высокую прочность на разрыв, однако уступает полиэтилену высокого давления по диэлектрическим свойствам и гибкости, вследствие присутствия в полимере остатков катализатора, что делает невозможным его использование в технике высоких частот. [c.320]


    Полимерные материалы получают главным образом в результате реакций полимеризации, сополимеризации и поликонденсации. Ассортимент высокомолекулярных соединений, а также варианты технологического оформления их получения и каталитические системы, используемые при этом, чрезвычайно разнообразны. Один из наиболее распространенных полимеров — полиэтилен, производство которого непрерывно возрастает и совершенствуется. Повышенный интерес к полиэтилену вызван такими его качествами, как высокая химическая и радиационная стойкость, хорошие диэлектрические свойства, низкая газо- и влагопроницаемость, легкость и безвредность. Из трех известных (основных) промышленных методов получения полиэтилена — полимеризацией этилена при высоком, среднем и низком давлении — в СССР получили распространение первый и последний способы. [c.138]

    Получающийся полиэтилен имеет температуру размягчения 120—125°С, плотность 0,94 —0,96, эластичное состояние до ИОХ, диэлектрические свойства несколько хуже, чем у полиэтилена высокого давления. [c.320]

    Бутилкаучук хорошо совмещается с полиэтиленом, полиизобутиленом и этиленпропиленовым каучуками. Вулканизаты таких каучуков отличаются очень хорошими диэлектрическими свойствами. Резины на основе бутилкаучука в сочетании с СКЭПТ характеризуются повышенной эластичностью и отличной озоно- и атмосферостойкостью. Введение хлоропренового каучука обеспечивает смесям высокую теплостойкость. [c.204]

    В электротехнике широко используют некоторые полимерные материалы, диэлектрические свойства которых невысокие, но они сочетаются с рядом ценных физических, химических и технологических свойств. Таким материалом является, например, поливинилхлорид. Вследствие несимметричного строения макромолекул и сильной их полярности поливинилхлорид худший диэлектрик, чем полиэтилен и полистирол. Однако такие его ценные свойства, как инертность по отношению к кислотам и щелочам, водостойкость, газонепроницаемость, невоспламеняемость и т. п., способствуют исключительно широкому применению поливинилхлорида для изоляции защитных оболочек кабельных изделий, проводов, для изготовления трубок, листов, лент и т. п. При дополнительном хлорировании поливинилхлорида получают перхлорвиниловый полимер, содержащий 64—65% хлора. Из него производят волокно хлорин, ткани, ленты, лаки, эмали, предохраняющие электроаппаратуру от коррозии. [c.339]

    Диэлектрические свойства, влагостойкость и инертность по отношению к агрессивным реагентам у полиэтилена не связаны с его структурой, а обусловлены химическим строением макромолекулы, являющейся по существу предельным углеводородом. Поэтому полиэтилен низкого давления, если он хорошо очищен от следов катализатора и других примесей (зольность 0,04—0,07%), по этим свойствам равноценен полиэтилену высокого давления. Если повысить зольность до 0,6%, то тангенс угла диэлектрических потерь при 10 гц может возрасти до 0,0010—0,0015. Загрязнения также отрицательно сказываются на водопоглощаемости и химической стойкости. [c.99]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Полиэтилен высокого давления имеет лучшие диэлектрические свойства, чем полиэтилен среднего и низкого давления, но изделия из него менее прочны. [c.125]

    Полиэтилен широко применяется в различных областях электро- и радиотехники [10, 16, 18—20], как термопластический материал с весьма высокими диэлектрическими свойствами. [c.771]

    Благодаря химической стойкости, высоким диэлектрическим свойствам, механической прочности, морозостойкости, низкой газопроницаемости и большой водостойкости, безвредности и легкости переработки полиэтилен находит широкое применение в машиностроении, производстве бытовых изделий, в сельском хозяйстве, производстве искусственных кож и пленочных материалов, в строительной технике, медицине и, т. д. [c.177]


    Получающийся полиэтилен, называемый. марлекс , по свойствам близок к полиэтилену, получаемому при атмосферном давлении и имеет некоторые преимущества перед полиэтиленом высокого давления, а именно температура размягчения его 115—127°, плотность 0,94—0,96, твердость 62 (по Шору), эластичное состояние до —115°. По диэлектрическим свойствам марлекс должен уступать полиэтилену высокого давления, так как удаление из марлекса следов катализатора весьма затруднительно. Молекулярный вес марлекса от 5000 до 30 ООО [31 ]. [c.778]

    Политетрафторэтилен можно рассматривать как полиэтилен, в молекуле которого все атомы водорода заменены атомами фтора. Энергия связи между углеродом и фтором велика и составляет 519 кдж/моль. Этим и объясняется весьма высокая термостойкость полимера, а также стойкость к действию окислителей и других химических реагентов. В этом отношении он превосходит даже платину и золото. Негорюч, обладает высокими диэлектрическими свойствами. Находит применение в химическом машиностроении и электротехнике. [c.471]

    Полиэтилен представляет собой твердое белое роговидное вещество с плотностью 0,92—0,95 Он обладает прекрасными диэлектрическими свойствами (не изменяющимися даже при сильном повышении влажности атмосферы), хорошим сопротивлением на разрыв, морозостойкостью, устойчивостью к действию большинства химических реагентов. Пленки из полиэтилена обладают хорошей воздухо- и влагонепроницаемостью. Температура плавления полиэтилена 100—110° С. [c.381]

    Основное отличие полиэтилена, полученного этим методом, заключается в почти полном отсутствии разветвленности его молекулярной цепи. Эти особенности определяют его более высокую температуру плавления (125— 130° С) и большую по сравнению с полиэтиленом высокого давления плотность. Поэтому полиэтилен, полученный при атмосферном давлении, называют также полиэтилен высокой плотности (ПВП) в отличие от полиэтилена низкой плотности (ПНП). Полиэтилен низкого давления несколько более стоек к действию некоторых органических растворителей, чем полиэтилен высокого давления, однако по сравнению с последним он имеет несколько худшие диэлектрические свойства. При одинаковом среднем молекулярном весе полиэтилен высокого давления отличается от полиэтилена низкого давления более высокой вязкостью расплава, эластичностью и морозостойкостью. [c.382]

    Большое техническое значение полиэтилена видно из следуюш их его качеств. Полиэтилен начинает размягчаться при температуре 100—125°, не изменяется при действии па него концентрированных азотной и соляной кислот до 80°, не растворяется при комнатной температуре ни в одном из известных растворителей, сохраняет эластичность при охлаждений до —60°. Он совершенно пе гигроскопичен и имеет самые высокие из всех известных органических пластиков диэлектрические свойства. Диффузия тазов через пленку полиэтилена протекает чрезвычайно медленно. [c.765]

    От соотношения кристаллической и аморфной частей полиэтилена зависят и многие его физико-химические и механические свойства. При уменьшении размеров кристаллов, а также при увеличении степени аморфности полимера образуется более гибкий и эластичный, легче обрабатываемый материал. Полиэтилен весьма стоек в атмосферных условиях к большинству химических реагентов, в том числе к кислороду и озону, обладает весьма высокими диэлектрическими свойствами. [c.766]

    При хранении полиэтилена и особенно при изготовлении из него изделий диэлектрические и механические свойства его заметно ухудшаются как и все метановые высокомолекулярные углеводороды иод действием света п тепла в присутствии кислорода воздуха полиэтилен способен окисляться, что приводит к значительному снижению эластичности, уменьшению прочности, ухудшению диэлектрических свойств и т. д. [c.769]

    Так как полиэтилен поглощает лишь ничтожное количество влаги, его диэлектрические свойства практически не изменяются ни прн повышении влажности в атмосфере, ип при погружении в воду. [c.770]

    Однако в других отношениях способы высокого давления имеют следующие преимущества а) отсутствие катализаторов, изготовление которых, как правило, является весьма трудоемким процессом (особенно изготов.ление алкилалюминиевых катализаторов) б) отсутствие растворителей, использование которых усложняет технологический процесс в) отсутствие в полиэтилене остатков катализаторов (уже следы которых резко ухудшают диэлектрические свойства полимеров и исключают возможность их использования в таких важных областях, как техника высоких частот) г) аппаратура более компактна, чем при работе при низких давлениях. [c.782]

    Вода отрицательно действует не только на механические, но и на диэлектрические свойства пластических масс. Исключение составляют фторопласты, полиэтилен[,1 и полистиролы. [c.280]

    При компаундировании асфальтита с термопластичными полимерами полиэтиленом, полистиролом и сополимером этилена с пропиленом получены пластики, которые в 20-40 раз превосходят асфальтиты по диэлектрическим свойствам, что делает перспективными их применение в высокочастотной технике (табл. 105). Преимуществом асфальтовых пластиков является их низкая стоимость, повышенная термостойкость, выражающаяся в более высокой температуре начала разложения компаунда. [c.150]

    Стойкость к неорганическим кислотам и едким щелочам, малое сопротивление потокам, устойчивость к гниению и микроорганизмам, высокие диэлектрические свойства, пластичность, высокая морозостойкость, а также простота изготовления из него деталей, методами отливки, штамповки, вальцовки, обработки на режущих станках делают полиэтилен важным материалом. Полиэтилен является термопластическим материалом и широко используется при производстве пленок, лент, нитей, трубок, прутков и т. д., широко применяемых почти во всех областях техники и быта. В общем виде полиэтилен представляет собой большое число соединенных между собой остатков молекулы этилена и может быть выражен формулой [c.257]

    Полиэтилен — термопластичный материал, который перерабатывается в изделия прессованием, сваркой, литьем под давлением. При нормальной температуре полиэтилен стоек к действию минеральных кислот, щелочей и растворов солей, обладает хорошими диэлектрическими свойствами и морозостойкостью. Применяется для изготовления труб, различных изделий сложной конфигурации, в качестве футеровочного материала химической аппаратуры, работающей в интервале тем- [c.14]

    Полиэтилен — твердый материал, белый в толстом слое, бесцветный и прозрачный в тонком. Низкая температура стеклования аморфной фазы (около —80 °С) обусловливает значительную морозостойкость полимера. Особенно важны высокие диэлектрические свойства полиэтилена, позволяющие применять его в качестве высокочастотного диэлектрика. [c.81]

    Диэлектрические свойства стабилизованного сшитого полиэтилена следующие г—2,5 (при 60 гц)-, tgo — 0,005 (при 60 гц), р— 10 ом-см. Этот материал кмеет также высокие механические показатели. Предел прочности при растяжении в исходном состоянии 168 кгс1см , относительное удлинение 560%. Эти показатели мало изменяются в процессе старения при 150° С (в течение 20 суток). У вулканизованного полиэтилена без введения сажи е = 2,3, tg 6 = 0,0004. Пробивное напряжение изоляции из вулканизованного полиэтилена, испытанное на кабеле (6 кв), больше на 10—20% пробивного напряжения полиэтиленовой изоляции. Вулканизованный полиэтилен стоек к истиранию. [c.105]

    При длительном нагревании на воздухе полиэтилен медленно окисляется. При этом происходит его частичная деструкция, снижающая механические и диэлектрические свойства, а также частичное сшивание макромолекул, повышающее вязкость расплава И затрудняющее переработку полимера в изделия методами вальцевания, экструзии и др. Для предотвращения окисления в полиэтилен [c.81]

    Полиэтилен обладает высокой химической стойкостью ко многим химическим реагентам, хорошими диэлектрическими свойствами и морозостойкостью. Полиэтилен является термопластичным материалом и перерабатывается в изделия главным образом литьем под давлением, экструзией , прессованием и сваркой. [c.25]

    Этот полимер, называемый в Англии полиэтиленом, а в Германии лупо-леном Н, обладает исключительно высокими диэлектрическими свойствами и находит широчайшее применение. [c.223]

    Диэлектрические свойства полиэтилена не зависят от метода его изготовления. Полиэтилен с полным основанием считается одним из лучших электроизоляционных материалов благодаря его низким диэлектрическим потерям, пизкой диэлектрической постоянной, высокой электрической прочности, высокому объемному -9лектрическому сопротивлению "  [c.214]

    Средний молекулярный вес стандартных образцов полипропилена достигает 150 ООО. Предел прочности нри растяжении такого полимера равен 330—360 Л г/г.)г, удлинение при разрыве достигает 400—800%. Как и полиэтилен, иолипропилен обладает превосходными диэлектрическими свойствами и устойчив к действию кислот и щелочей. При комнатной температуре стереорегулярный полипропилен не растворим в органических растворителях, при температуре выше 80 растворим в бензоле, толуоле, хлорированных углеводородах. [c.216]

    Полиэтилен высокого давления имеет плотность 0,92—0,93 г см и температуру плавления 105—110° С. Диэлектрические свойства характеризуются следующими данными диэлектрическая проницаемость 2,2—2,3, удельное объемное сопротивление порядка 10 ОМ см, удельное поверхностное сопротивление порядка 10 ом, тангенс угла диэлектрических потерь при 10 гц 0,0002—0,0004, электрическая прочность 45—60 кв1мм. [c.98]

    У полиэтилена среднего давления тоже большая плотность (0,96—0,97 г1см ), высокая температура плавления (127—130° С) и значительная степень кристалличности (85—93%). Механические свойства у него такого же порядка,-как у полиэтилена низкого давления. По диэлектрическим свойствам полиэтилен среднего давления не уступает полиэтиленам, полученным другими способами. [c.99]

    Полиэтилены, получающиеся при полимеризации при низких давлениях (способы НИИ ПП, Циглера и Филипс Компани), имеют в сравнении с полиэтиленами, получающимися при высоких давлениях, больший молекулярный вес, более высокую температуру плавления, большую жесткость, низкую механическую прочность, а по желанию могут иметь и большую плотнось (до 0,98), однако они уступают по диэлектрическим свойствам н по гибкости. [c.782]

    Диэлектрические свойства полистирола, особенно блочного, несколько ниже, чем фторонласта-4, но аналогичны полиэтилену. Поэтому полистирол заслуженно относится к числу лучших электроизоляционных материалов. [c.806]

    Полиэтилен обладает хорошей морозостойкостью, во иевысокоД теплостойкостью. Устойчив к растворам кислот, щелочей н солей, но не устойчив к окислителям и воздействию ультрафиолетовых лучей, особенно при нагревании. Прн нормальной температуре набухает в большйнстве орх гмгнчв-ских растворителей. Имеет высокие диэлектрические свойства/негорюч. Легка поддается механической обработке, хорошо сваривается взотом при 220 С. I [c.344]

    Олефины — 4-метилпентен-1, гексен-1, пентен-1 и 3-метилбути-лен-1—являются ценными мономерами для производства полимеров и сополимеров, обладающих высокой температурой плавления, низкой плотностью, малой теплопроводностью, хорошими механическими и диэлектрическими свойствами [73]. Сополимеризацией этилена с 4-метилпентеном-1 получают линейный полиэтилен низкой плотности — сополимер, характеризующийся ценными физико-механическими свойствами. Пентен-1 служит также сырьем для производства системного пестицида — пропиконазола, поэтому разработка эффективной технологии промышленного производства этих моноолефинов является важной народнохозяйственной задачей. [c.116]

    Гофтн Дж., Вильямс Г., Пассаглиа Е. Аналяз а-, - и у-релаксационных процессов в полихлортрифторэтилене и полиэтилене. Диэлектрические и механические свойства.—В кн. Переходы и релаксационные явления в полимерах / Пер. с англ. под ред. А. Я. Малкина. М. Мир, 1968, с. 193—272, [c.307]

    Шелтон и Винсент [2] и Бейтман с сотр. [3] предположили, что для большинства полимеров разложение перекисей, указанное в реакции (Х1П-4), является основным источником радикалов, которые инициируют окисление. В процессе переработки полимеров обычно образуются в небольших количествах перекиси и другие примеси. На первых стадиях окисления Шелтон наблюдал изменение скорости, которое он объяснил началом бимолекулярного разложения, по мере того как накап.т1ивались гидроперекиси. Большинство полимерных углеводородов окисляются с заметной скоростью при действии ультрафиолетового излучения и/или повышенной температуры. В условиях атмосферных воздействий у полиэтилена, нанример, менее чем через 2 года происходит ухудшение механических и диэлектрических свойств [4, 5]. Как полиэтилен, так и полипропилен окисляются с заметной скоростью в темноте при 60° [6]. Фотоокисление полиэтилена становится заметным только через несколько месяцев экспозиции на открытом воздухе [4, 5]. Ионы некоторых металлов увеличивают скорость инициирования, ускоряя разложение гидроперекисей, вероятно, путем гомолитического распада их на радикалы. Медь является одним из активных катализаторов реакций окисления полиоле-фина. Этот эффект значительно больше для полипропилена, полиизобутилена и других полиолефинов аналогичного строения, содержащих больше третичных атомов углерода в основной цепи, чем в молекуле полиэтилена. Некоторые остатки катализатора, удерживаемые полимерами в процессе полимеризации, становятся активными катализаторами окисления. [c.452]

    Удачное и редкое сочетание таких свойств полиэтилена, как, химическая стойкость, механическая прочность, морозостойкость, хорошие диэлектрические свойства, стойкость к радиационным излучениям, низкая газопроницаемость и влагопогло-шение, легкость и безвредность, позволяют применять его в самых различных областях техники и в быту. Из полиэтилена изготовляют трубопроводы, сосуды для химически активных веществ, футеровку резервуаров и аппаратов, краны, детали санитарно-технического оборудования, тонкие пленки, ленты, прутки, бруски и др. Широко используется полиэтилен и для изготовления предметов бытового назначения — футляров для радиоприемников, столовой и кухонной посуды, пробок, бутылок, аяистр, ведер, ванн, скатертей, драпировок и др. Полиэтилен применяют в протезной технике, пластической хирургии, для изготовления медицинских инструментов, как упаковочный материал. [c.89]


Смотреть страницы где упоминается термин Полиэтилен диэлектрические свойства: [c.140]    [c.378]    [c.339]    [c.237]    [c.362]    [c.310]   
Пластические массы (1961) -- [ c.586 ]

Переработка полимеров (1965) -- [ c.199 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.201 ]

Основы переработки пластмасс (1985) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические свойства



© 2025 chem21.info Реклама на сайте