Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вторичная и третичная структуры больших РНК

    Механическая прочность мясных изделий обусловлена опре. деленной жесткостью третичной структуры белков. Наибольшей жесткостью обладают белки соединительных тканей (коллаген и эластин). Одним из основных, но не единственным фактором обусловливающим жесткость третичной структуры большинства белков животного происхождения за исключением яиц и икры является присутствие в них воды (в форме прочносвязанной гидратной и др., которые здесь не рассматриваются). В мясных продуктах вода в третичной структуре белка связана главным образом с мышечными белками, а не с соединительнотканными. Содержание соединительнотканных белков зависит от характера сырья, возраста животного и ряда других условий. В среднем, меньше всего их в рыбе ( —4 %), затем в молодых птицах и свинине (до 8 %), больше всего (8— 5 %) в убойном мясе говядины и баранины. Тепловая обработка животных продуктов и заключается в частичном разрушении соединительнотканных, а также мышечных белков. Разрушение происходит за счет воды, участвующей в образовании третичной структуры мышечных белков (практически вода в мясе связана главным образом с этими белками) и освобождающейся при их температурной коагуляции. При тепловой обработке высвобожденная вода внедряется непосредственно во вторичную структуру белков (главным образом коллагена), разрушая их и приводя соединительнотканные белки в желатинообразное состояние. Эту фазу часто рассматривают как образование из коллагена глютина. Механическая прочность мясных продуктов при этом заметно уменьшается. Температурная коагуляция белков в зависимости и от их природы начинается с 60 °, но в большинстве случаев с 70 С. При варке и жарке мяса температура внутри изделия в зависимости от вида мяса и величины куска обычно достигает 75—95 С. [c.184]


    В соответствии с терминологией, предложенной Линдер-стрём-Лангом [ ], можно сказать, что молекулы обычных полимеров в растворе не обладают вторичной структурой, тогда как молекулы биологически активных полимеров и их синтетических аналогов могут ее иметь. При этом первичной структурой макромолекулы называется число и расположение химических связей в молекуле, а вторичной — регулярная пространственная спиральная структура с определенной периодичностью, стабилизуемая водородными связями. Исследованию вторичных структур биологически активных макромолекул посвящено громадное количество работ, в которых были определены параметры спиральных конформаций для большого числа синтетических полипептидов и полинуклеотидов, а также для природных нуклеиновых кислот и белков. В последнем случае, наряду с вторичной структурой, большую роль играет также третичная структура молекул, т. е. взаимное расположение спиральных и неспиральных участков, обусловленное взаимодействием боковых групп цепи, в частности, связями 5—8. Наиболее известные примеры вторичных сгруктур представляют собой а-спираль Полинга — Кори [2> ] для полипептидов и двойная спираль Крика — Уотсона [ ] для дезоксирибонуклеиновой кислоты (ДНК). Эти структуры [c.291]

    Между отдельными группами вторичной структуры белков могут также образовываться внутримолекулярные водородные связи, в результате чего отдельные участки спирали сближаются, молекулы изгибаются и свертываются в клубок иди складываются - формируется третичная структура белка. В ее образовании большую роль играют также межмолекулярные взаимодействия полярных групп аминокислот, которые локализуются на внешней поверхности молекул и образуют водородные связи с водой. [c.271]

    Белки в природе представлены очень большим разнообразием структур в зависимости от организации молекулярных цепей на четырех уровнях. Линейная последовательность аминокислот, составляющая полипептидную цепь, образует первичную структуру. Аминокислотный состав, число и последовательность аминокислот, а также молекулярная масса цепи характеризуют эту первичную структуру и обусловливают не только другие степени организации, но физико-химические свойства белка. Образование водородных связей между кислородом карбонильной группы и водородом МН-группы в различных пептидных связях предопределяет вторичную структуру. Установление этих внутри- или межмолекулярных водородных связей приводит к возникновению трех типов вторичной структуры а-спираль, Р-структура в виде складчатого листка или тройная спираль типа коллагена. В зависимости от характера белков в основном образуются вторичные структуры одного или другого вида. Однако некоторые белки могут переходить из одной структуры в другую в зависимости от условий, в которых они оказываются, либо образовывать смесь частей в виде упорядоченных а- и Р-структур и неорганизованных частей, называемых статистическими клубками. Между боковыми цепями аминокислот, составляющими полипептидную цепь, устанавливаются взаимодействия ковалентного характера (дисульфидные связи) или нековалентные (водородные связи, электростатические или гидрофобные взаимодействия). Они придают белковым молекулам трехмерную организацию, называемую третичной структурой. Наконец, высшая степень организации может быть достигнута нековалентным связыванием нескольких полипептидных цепей, что приводит к образованию структуры, называемой четвертичной. Многие белки имеют пространственную конфигурацию сферического типа и называются глобулярными. В противоположность этому некоторые белки обладают продольно-ориентированной структурой и называются фибриллярными. Натуральные волокнистые [c.531]


    Третичная структура характеризует пространственное расположение цилиндрических а-спиралей нли других образований вторичной структуры. Спирали могут свиваться в клубок, образовывать глобулы или располагаться рядом, образуя нитевидные структуры — фибриллы. В образовании третичных структур большое значение имеют дисульфидные мостики 5—5 между различными частями макромолекул. [c.630]

    ВТОРИЧНАЯ И ТРЕТИЧНАЯ СТРУКТУРЫ БОЛЬШИХ РНК [c.437]

    Как уже упоминалось ранее (см. разд. 25.3.2), белки мембран можно подразделить на внешние, которые свободно закреплены на поверхности мембраны, и внутренние (или интегральные), расположенные внутри мембраны. Наиболее хорошо изученными мембранами являются миелин и мембраны эритроцитов, имеющие относительно простой состав белковых компонентов. Миелин, по-видимому, содержит только три типа полипептидных цепей [26], одна из которых является внешней и может быть удалена из мембраны экстракцией слабыми кислотами, две остальные являются внутренними и обладают необычным свойством — растворимостью в смеси хлороформа и метанола. Аминокислотная последовательность внешнего белка установлена, однако его вторичная и третичная структуры не определены. Большую часть обоих внутренних белков составляют гликопротеины входящие в их состав аминокислоты на 50 % являются неполярными, это затрудняет их определение, так как содержащие их пептидные фрагменты нерастворимы. [c.121]

    При изучении эффекта Керра [119], а также при исследовании спектров флуоресценции 7-глобулина [1201 показано, что 90% ароматических остатков спрятаны внутри глобулы и находятся в гидрофобном окружении. При подробном изучении дифференциальных УФ-спектров 7-глобулина Окуловым и Троицким [1211 обнаружено, что примерно 17 остатков тирозина (из 56) и 3 остатка триптофана (из 22) расположены на поверхности нативной глобулы 7—8 тирозинов расположены в щелях глобулы и больше половины тирозинов (31—32) и подавляющая часть триптофанов находятся внутри глобулы. Авторами было замечено, что при pH 3 молекула 7-глобулина может набухать , что приводит к повышению доступности хромофоров без разрушения упорядоченных структур молекулы. Это, вероятно, связано с частичным разрушением глобулярной (третичной) структуры без нарушения вторичной. Если при этом частично или полностью разрушаются гидрофобные области, то естественно, что связывание углеводорода должно уменьшаться. Вероятно, такое поведение (существование частично развернутой формы белка) при изменении pH присуще всем глобулярным белкам. Однако для обнаружения этих форм недостаточно изучения только вязкости и оптической активности. Очень важную информацию может дать исследование связывания углеводородов. Дальнейшее увеличение заряда с изменением pH среды приводит белковую молекулу к состоянию, соответствующему полной дезорганизации глобулы, разрушению ее третичной и вторичной структуры, т. е, к состоянию клубка. [c.26]

    В действительности же не имеет смысла разделять вторичную и третичную структуру белка — мы имеем дело с единственной пространственной структурой, содержащей те или иные регулярные участки и неупорядоченные звенья. Сказанное не отвергает иерархического принципа в биологии. Иерархия структур возникает в любых системах, строящихся из большого числа однотипных элементов при наличии взаимодействий между ними. Проблема биологической иерархии была рассмотрена Берналом [77]. [c.220]

    Спирализация приводит к возникновению так называемой вторичной структуры ДНК при изгибании спирали появляется третичная структура и т. д Возникновение изогнутой спирали, доказанное методом двойного лучепреломления при течении, обусловлено, по-видимому, наличием в спирали неупорядоченных гибких участков, где действие водородных связей почему-либо ослаблено. Однако двойная спираль там, где она сохранилась, является достаточно жестким образованием и, следовательно, обладает небольшим числом степеней свободы. Поэтому она стремится разделиться на одиночные цепи (длина сегмента примерно в 50 раз больше, чем у гибких полимерных цепей), способные принять более вероятное состояние свернутого кл>бка такой переход спираль — клубок сопровождается возрастанием энтропии системы, являющимся движуще-й силой этого процесса, и действительно имеет место при плавлении кристаллов ДНК (около 80°С) . Аналогичный процесс разрушения водородных мостиков и биспиральной структуры, но без обязательного свертывания цепей в клубок наблюдается во время подкисления или подщелачивания растворов ДНК. При этом на каждой макромолекуле возникают одноименные заряды (в результате присоединения протонов к аминогруппам или усиления диссоциации остатков фосфорной кислоты), вызывающие взаимное отталкивание цепей. [c.336]

    История исследований белков, по сравнению с другими классами природных соединений, наиболее богата событиями и открытиями, поскольку эти вещества вездесущи в живой природе, очень многообразны и наиболее сложны по структуре. Кроме того, их сложность и большие молекулярные размеры сочетаются с низкой устойчивостью и трудностью индивидуального выделения. Но к настоящему времени многие барьеры на этом пути преодолены. Достаточно быстро и надежно хроматографически определяется аминокислотный состав белков и последовательность их соединения между собой рентгеноструктурный анализ позволяет установить пространственную структуру тех белковых молекул, которые удается получить в виде кристаллов различными вариантами метода ЯМР успешно исследуется поведение белков в растворах, в процессах комплексообразования, т.е. в ситуации, близкой к той, которая имеет место в живой клетке. В настоящее время принято различать четыре структурных уровня в архитектуре белковых молекул первичная,вторичная,третичная и четвертичная структуры белков. [c.94]


    Только первичные частицы аэросила имеют шарообразную форму, частицы осажденных кремнекислот большей частью несферические [8]. Установлено, что кремнекислотные наполнители обладают первичной, вторичной и даже третичной структурой, причем за качество наполнителя предположительно отвечает вторичная структура [9]. Чем меньше степень агрегирования частиц кремнекислоты, чем меньше в ней так называемой гель-структуры, тем лучше наполнитель. Необходимо отметить, что процесс получения гидратированных кремнекислот предполагает наличие у них значительного количества примесей, не меньше 1 —1,5%, не могущих не оказывать влияния на адсорбционные свойства и тем самым на качество наполнителя. Таким образом, белая сажа, исключая аэросил, всегда модифицированный кремнезем. [c.60]

    Простые белки — это полипептиды с относительно большой молекулярной массой, характеризующиеся, в отличие от просто полипептидов, разными уровнями организации — первичной, вторичной, третичной, четвертичной Хотя между полипептидами и белками трудно провести четкую грань, но белки — это полипептиды, способные к проявлению вторичной, третичной, четвертичной структур [c.880]

    На основании экспериментальных данных высказано предположение, что большинство биологически активных белков с молекулярным весом больше 50 ООО состоят из двух или более полипептидных цепей, соединенных в функциональные единицы с помощью некоторых взаимодействий. Говорят, что такие единицы обладают четвертичной структурой, причем, разумеется, каждая цепь имеет свою первичную, вторичную и третичную структуру. [c.382]

    Для жизненной функции клеток решающее значение имеют белки и нуклеиновые кислоты. Белки — главный органический компонент цитоплазмы. Некоторые белки относятся к структурным элементам клетки, другие — к имеющим важное значение ферментам. Радиационное повреждение белков состоит в уменьшении их молекулярной массы в результате фрагментации полипептидных цепочек, в изменении растворимости, нарушении вторичной и третичной структуры, агрегировании и т. п. Биохимическим критерием радиационного повреждения ферментов является утрата ими способности осуществлять специфические реакции. При интерпретации пострадиационных изменений ферментативной активности in vitro наряду с радиационными нарушениями самого фермента следует учитывать и другие повреждения клетки, прежде всего мембран и органелл. Чтобы вызвать явные изменения ферментативной активности в условиях in vitro, требуются значительно большие дозы, чем in vivo. [c.16]

    НЫМ источником сведений о структуре белков, приводит ко все большим успехам в установлении деталей структуры. Например, на ранних стадиях исследования структуры железосодержащего белка миоглобина достигнутое разрешение составляло 6 А, что не позволяло увидеть индивидуальные атомы, но указывало-на скрученную форму пептидных цепей, обвивающих матрицу, состоящую из молекул воды (т. е. давало возможность установить третичную структуру). Увеличение разрешения до 2 А позволило установить положение большинства индивидуальных аминокислот, основываясь на форме содержащихся в них заместителей (первичная и вторичная структуры). [c.127]

    На рис. 26 приведена диаграмма термического равновесия неустойчивой легированной системы Ре — РезС (сплошные линии) и устойчивой легированной системы Ре—С (пунктирные линии). На этой диаграмме чистое железо расположено в левой части, а цементит — в правой части. Цементит РезС содержит 6,67% С, обладает сложной кристаллической структурой (появляется в виде независимого структурного составляющего в форме первичного, вторичного, третичного цементита), большой твердостью, плотностью 7,86 г1см , магнитными свойствами при комнатной температуре, которые теряет при 215°. Отклонения на этой диаграмме появляются из-за существования различных [c.496]

    Ферменты — очень сложные органические молекулы, представляющие собой глобулярные белки. Их каталитические центры состоят их ряда атомных групп, природа и взаимное расположение которых в пространстве строго детерминировано, что, собственно, и определяет каталитическую активность фермента, Все структурные и пространственные особенности каталитического центра заданы как последовательностью аминокислотных остатков полипептидной цепи данного белка (первичной структурой), так и упаковкой этой цепи Б фиксированную конформацию белковой глобулы (ее вторичной и третичной структурами Поэтому для химиков нет смысла пытаться построить искусственный структурный аналог такой чудовищно сложной конструкции, добиваясь сходства со свойствами оригинала. Не говоря уже о практически непреодолимых трудностях подобной задачи, она и смысла большого не имеет (если только мы не хотим создать искусственную жизнь). Дело в том, что каждый фермент решает узко специализированную задачу, а эта специализация лишь изредка совпадает с задачами человеческой химии. Смысл всей Проблемы не в этом, а в том, чтобы обеспечить дизайн квазиферментов под реальные задачи (ну, например, расщеплять высшие парафины до низших, т.е. делать бензин из мазута), т. е. не копировать или моделировать живые ферменты, а научится делать ферменте-подобные катализаторы на заказ (не копировать природу, а учиться у нес, воспринять ее методологию, а не результаты )- Кроме того, ферменты как катализаторы для лабораторного или про- [c.477]

    Рибосомные белки большинства животных представлены в осн. умеренно основными полипептидами, хотя имеется неск. нейтральных и кислых белков. Мол. м. рибосомных белков варьирует от 6 тыс. до 60 тыс. В прокариотической Р. малая субчастица (30S) содержит ок. 20, большая (50S)-ok. 30 разл. белков в эукариотической Р. 40S субчастица включает ок. 30 белков, а 60S-ок. 40 (обычно Р. не содержат двух или неск. одинаковых белков). 1 ибосомиые белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой они занимают преим. периферич. положение в ядре, состоящем из рРНК. В отличие от вирусных нуклеопротеидов в структурно асим. [c.264]

    Если рассмотреть ряд алкилгалогенидов, то при переходе от первичного ко вторичному и затем к третичному структура становится более разветален-ной у атома, связанного с галогеном. Эго увеличение степени разветвленности приводит к следующим результатам во-первых, появляется большое число атомов водорода для атаки основанием и, следовательно, вероятность элиминирования становится больше, и, во-вторых, образуется более разветвленный и более устойчивый алкен (более устойчивое переходное состояние и меньшая jkt)- Таким образом, при дегидрогалогенировании реакционная способность X уменьшается в порядке третичный > вторичный > первичный. [c.158]

    Разделение смесей спиртов, кислот, простых и сложных эфиров показано в ряде работ [1, 179—186] (рис. 38—40). При разделении первичных, вторичных, третичных спиртов, диолов, алкилалифатнческих эфиров на полимерных сорбентах большое влияние на порядок элюирования оказывает структура алкильной цепи компонента [186]. Модифицирование пористых полимеров полярной жидкой фазой (полиэтиленгликоль 1500) полезно при разделении спиртов, имеющих различную структуру, но близкие температуры кипения [187]. [c.135]

    Организованная определённым образом во вторичную структуру молекула белка затем укладывается в компактную, плотную структуру, назьшаемую третичной структурой белка. В её образовании участвуют как регулярные (спирализованные или р-складчатые), так и аморфные участки полипептидной цепи. В некоторой степени третичная структура белков отражена в системе классификации белков, основанной на их растворимости в водных средах и являющейся более ранней по сравнению с уже уттоминавшейся системой деления белков по продуктам их гидролиза (см. с. 66). В этом варианте классификации различают глобулярные белки, растворимые в воде и водных растворах кислот, оснований и солей, и фибриллярные белки, нерастворимые в этих растворителях. Третичная структура фибриллярных белков характеризуется нитевидностью (лат. fibrilla - волоконце), длина молекул этих белков в сотни раз больше их диаметра, что обусловлено параллельной (или анти-параллельной) ориентацией их цепей. Цепи фибриллярных белков группируются друг около друга в виде протяжённых пучков и отличаются очень большим числом межцепочечных водородных связей. Такие молекулы нерастворимы в воде, так как растворение требует высоких энергетических затрат на разрьш водородных связей, и очень прочны, поэтому они являются основным строительным материалом живых тканей (например кератины, коллаген, эластин, миозин, фиброин и пр.). [c.70]

    Применение вычислительных методов длительное время также не давало существенно лучших результатов даже и после установления того фундаментального факта, что процессы формирования белков являются обратимыми. Постулат о том, что собственно последовательность аминокислот в белке лежит в основе определения его пространственной структуры, а результирующая конформация белка в целом должна соответствовать минимуму свободной потенциальной энергии, не облегчил в заметной мере вычислительную задачу. Неизмеримые трудности состоят в том, что вследствие огромных размеров молекул белков имеется астрономически большое число их возможных конформаций. Поэтому потребовались бы многие годы компьютерного времени, чтобы сравнить их энергии. Решение вычислительной задачи стало возможным с разработкой программы LINUS. Эта программа основана на гипотезе иерархической конденсации . Согласно этой гипотезе, соседние участки цепи белка взаимодействуют во время ее складывания и образуют локальные фрагменты, которые затем ассоциируют в более крупные структуры. Процесс продолжается в иттерационном режиме до формирования конечной третичной структуры. Фундаментальное отличие программы LINUS от предшествующих программ заключается в том, что, согласно гипотезе иерархической конденсации , сложенный белок необязательно достигает состояния глобального минимума энергии (самое низкое из возможных состояний энергии), а оказывается в состоянии локального минимума (самое низкое из достижимых состояний энергии). Применение указанной программы позволяет объективно предсказывать и вторичную, и третичную структуру белка. [c.532]

    При исследовании расплавов или растворов полимеров обычно имеют дело с макромолекулами разнообразных форм атомы, составляющие основную цепь полимера, могут принимать любую конформацию из большого числа конформаций, которые допускаются ковалентными связями и валентными углами их первичной структуры. Поэтому вторичная структура таких полимеров характеризуется динамической последовательностью быстрых изменений внутренних степеней свободы полимера при действии на полимер сдвиговых напряжений и теплового движения. Такая вторичная структура называется конформацией статистического клубка. Для молекул почти всех синтетических полимеров характерна конформация статистического клубка в растворе и расплаве. Известны, однако, определенные биологические макромолекулы, которые следует отнести к противоположному краю конформационного спектра. В белках и ферментах сочетание ковалентных и нековалентных сил приводит к вторичной и третичной структурам (трехмерная пространственная упорядоченность вторичной структуры), которые являются энергетически выгодными даже в растворе. Эти сложные, строго заданные трехмерные конформации обусловливают высоко-специфичесние биологические функции белков и ферментов. [c.182]

    Растваримость аминов в водных растворах прежде всего определяется типом амина и существенно уменьшается в следующей п01сле-довательности первичные>вторичные>третичные. В каждом классе аминов растворимость соединений уменьшается с увеличением-длины алкилБного радикала и может быть очень низкой. Например, растворимость в воде третичных аминов, алкильные радикалы которых имеют больше восьми атомов углерода, составляет не более чем 5-10" %. Четвертичные аммониевые основания,, напротив, довольно хорошо растворимы, поэтому в структуре молекулы должны быть радикалы с довольно длинной цепью, чтобы гарантировать образование соединений с приемлемо низкой растворимостью. [c.151]

    Белки характеризуются прежде всего первичной структурой, т. е. последовательностью остатков аминокислот. Однако для веществ с большим молекулярным весом имеют значение и другие факторы, приводящие к образованию вторичной и третичной структур, в значительной степени влияющид на их химические и физические свойства. Вследствие того, что пептидная связь по некоторым особенностям близка к двойной, что обусловливает ее планарность, пептиды и белки могут существовать как в цис-, так и в траке-конфигурации [106]. Обычно осуществляется транс-форма с а-спиралью, так как ifu -форма стерически более затруд- [c.384]

    Поскольку в образовании вторичной и третичной структуры частично участвуют относительно слабые связи, физическое состояние белка, а следовательно, и активность фермента, гормона и антибиотика в значительной степени зависят от температуры, pH, присутствия солей и т. д. Нагревание вызывает распрямление белковой молекулы, которое вследствие большой положительной энтропии проявляется тем больше, чем выше температура [106]. Некоторые химические реагенты, такие, как мочевина и гуанидин, вызывают изменения в физическом состоянии и реакционной способности многих белков, разрывая главным образом стабилизующие структур г водородные связи, в то время как под действием органических растворителей пройсходит разрыв гидрофобных связей. Изменение pH обусловливает разрыв водородных связей в результате удаления протона и вызывает электростатическую неустойчивость. Эти изменения часто происходят очень резко и напоминают переходы первого порядка. [c.385]

    Исходя из данных по изучению вторичной и третичной структуры белков оптическими и гидродинамическими методами [47], естественно полагать, что состояния спин-меченого фрагмента полипептидной цепи после обработки белка иючевиной и диоксаном отличаются отсутствием или наличием а-спиральной структуры. Наличие вторичной структуры существенно увеличивает жесткость спин-мечеиого участка цепи макромолекулы, а потому подвижность парамагнитной метки в присутствии мочевины значительно больше, чем в присутствии диоксана. [c.169]

    Молекулы многих белков состоят из нескольких индивидуальных поли-пептидных цепей, не связанных одна с другой ковалентными связями. К таким белкам относится, в частности, гемоглобин, молекула которого, как уже отмечалось выше, состоит из четырех полипептидных цепей и не содержит ни одного дисульфидного мостика. О таких белках говорят, что они обладают четвертичной структурой. При этом каждая из индивидуальных цепей может иметь свою собственную первичную, вторичную и третичную структуру. Теперь известно, что молекулы многих белков состоят из нескольких субъединиц. Можно думать, что из субъединиц состоят все или почти все белки с молекулярным весом больше 50 ООО. Впервые концепция о том, что белковые молекулы состоят из субъединиц, была выдвинута в 1930-х г.г. Сёренсеном и Сведбергом однако эта концепция долго не имела сторонников и получила признание лишь в последние несколько лет. [c.116]


Смотреть страницы где упоминается термин Вторичная и третичная структуры больших РНК: [c.58]    [c.38]    [c.273]    [c.196]    [c.53]    [c.23]    [c.212]    [c.241]    [c.267]    [c.224]    [c.281]    [c.267]    [c.14]    [c.512]    [c.85]    [c.197]    [c.195]    [c.169]    [c.192]    [c.103]   
Смотреть главы в:

Биофизическая химия Т.3 -> Вторичная и третичная структуры больших РНК




ПОИСК





Смотрите так же термины и статьи:

Вторичная и третичная структуры



© 2025 chem21.info Реклама на сайте