Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители атактические

    Растворители перегоняются и вновь используются, а остающийся после отгонки растворителя атактический полипропилен является побочным продуктом производства. [c.64]

    Завершающие этапы процесса - прекращение реакции, экстракцию катализатора и т.д. - проводят так же, как и при получении полиэтилена. В зависимости от применяемого катализатора от 1 до 10% прореагировавшего пропилена превращается в растворимый аморфный атактический полимер. Этот полимер выделяют из растворителя перегонкой перед его повторным использованием. [c.121]


    Полимер взвешивают и определяют общий выход. Получаемый полимер не является полностью изотактическим, а содержит также и некристаллизующуюся атактическую фракцию. Для выделения изотактического полистирола в чистом виде используют различную растворимость аморфного атактического и кристаллического изотактического полистиролов в органических растворителях. Наиболее удобным растворителем для разделения этих фракций служит метилэтилкетон. Небольшое количество полученного полимера (около 1 г) помещают в колбу с обратным холодильником и нагревают ее с 10 мл метилэтилкетона в течение [c.46]

    Атактический полиацетальдегид растворим во многих органических растворителях, растворимость изотактического полимера очень ограниченна. [c.339]

    Экстракцию атактической фракции можно осуществлять и низшими углеводородами (Сз) при температурах ниже 0° С. Степень экстракции Б этих условиях практически такая л<е, как при экстракции бензином при 20°С, но в данном случае полимер легче отделить от остатков растворителя [43]. [c.51]

    Определение стереоизомерного состава полипропилена обычно производят методом последовательного экстрагирования [4—7], основанным на резком различии в растворимости аморфной и кри-. сталлической фракций. Как правило, экстрагирование осуществляют кипящими растворителями в такой последовательности вначале из полипропилена ацетоном экстрагируют маслообразные, низкомолекулярные атактические полимеры, затем эфиром— высокомолекулярные атактические каучукоподобные полимеры и парафиновыми углеводородами Сб—— стереоблочные фракции со все более высокими молекулярным весом и степенью кристал- [c.64]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]


    Природные целлюлозные волокнистые материалы подвергают обработке окисленным атактическим полипропиленом, наносимым на поверхность волокон путем его сорбции из раствора в алифатических углеводородах С5-С7 с последующей сушкой от растворителя [99, 140]. Наличие карбоксильных групп в полимере позволяет создавать прочную связь за счет образования водородной связи между карбонильными группами целлюлозы и карбоксильными группами полимера, что обеспечивает высокую устойчивость полимера к вымыванию нефтепродуктами и высокую гидрофобность адсорбента. Помимо этого, окисленный атактический полипропилен образует с поверхностью целлюлозы соединения типа кластеров, что существенно увеличивает сорбционные свойства природных волокон. Указанные свойства позволяют существенно повысить емкость адсорбента к нефти и нефтепродуктам и обеспечить возможность его многократного использования. [c.140]

    Позже опыты такого же типа мы повторили с растворами заведомо атактического полиметилметакрилата и получили те же результаты, хотя природа образующегося геля была, разумеется, иной (вопрос о том, какой именно, требует специального рассмотрения и мы к нему скоро вернемся). При этом наблюдался другой драматический эффект ориентационная катастрофа II. Если образовавшуюся слегка набухшую в растворителе нить ПММА закрепить в зажимах установки для изометрического нагрева, она в определенный момент исчезает , взрываясь и превращаясь в мелкую пыль. Ясно, что это связано с аморфностью ПММА и невозможностью фиксации ориентированного состояния кристаллизацией. Накопленные в процессе перехода струя — волокно внутренние напряжения не могут рассосаться (при кристаллизации происходит сброс избыточной энергии) и попросту разрывают волоконце на мелкие осколки. [c.383]

    При полимеризации окиси этилена под действием тщательно очищенных карбонатов щелочноземельных металлов (например, карбоната стронция) образуются высокомолекулярные продукты 50]. Полиэтиленоксиды с молекулярными массами до 600 представляют собой вязкие жидкости полимеры с большими молекулярными массами — воскообразные или твердые, кристаллические продукты, хорошо растворимые в воде и некоторых органических растворителях, в частности в бензоле или в хлороформе. Производные окиси этилена (например, окись пропилена) в общем слу-чае полимеризуются с образованием атактических аморфных, а также изотактических кристаллических полимеров [51, 52]. При полимеризации /-окиси пропилена может быть получен оптически активный полипропиленгликоль [53]. [c.163]

    Среди полимеров полистирол и полидиметилсилоксан могут быть применены в качестве молекулярных щупов для оценки пор. Методом светорассеяния для невозмущенного растворителя атактического полистирола получено значение г Ш = 49 [5], а для полидиметилсилоксана = 53[6]. Следовательно, для полистирола с молекулярным весом М от 10 до 10 значения D изменяются от 35 до 350 А. Значения ОдЗависят от природы растворителя, температуры и других факторов. Таким образом, имея набор узких фракций полимера и изучив адсорбцию его из растворов, нетрудно получить интегральную кривзгю распределения площади поверхности адсорбента по размерам пор. [c.305]

    В отличие от полиэтиленовых полипропиленовые волокна имеют важное значение в промышленности. Исходным сырьем для них служит полипропилен с преимущественно изотактиче-ской структурой, который получается полимеризацией пропилена при низких давлениях и температурах на катализаторах циглеровского типа в инертном углеводородном растворителе. Атактический полипропилен не обладает волокнообразующими Свойствами, а синдиотактический не производится в промышленности. Полимер с Т пл 165°С и молекулярным весом до 400 000 отфильтровывают от реакционной смеси, освобождают от остатков катализатора, добавляют антиоксидант, окрашивают (если это нужно) и подвергают формованию из расплава с последующим вытягиванием волокна. Существенно, чтобы тактичность полипропилена составляла около 90%. Ориентированное волокно может иметь высокую степень кристалличности — до 50—60%). Стремление свести к минимуму пространственное взаимодействие между метильными группами заставляет почти линейные молекулы полимера принимать форму спирали, в которой на каждый, виток приходится три мономерных звена, а скелетные связи С—С поочередно находятся в транс- и гош-по-ложениях (рис. 9.6). [c.334]

    Некоторые полимеры можно синтезировать в различной стереохимической форме так, например, для полистирола возможны две формы — изотакттеская и атактическая, имеющие различные физические свойства. Изотактический полимер можно получить в кристаллической форме эта форма плавится при 250° С и нерастворима в большинстве обычных растворителей. Атактический полимер аморфен, имеет низкую температуру плавления и легко растворим в большинстве растворителей. Локальная стереохимическая структура изотак-тического полистирола в виде полностью растянутой [c.187]


    Процесс производства полипропилена мало чем отличается от производства полиэтилена высокой плотности (низкого давления). Полимеризацию пропилена проводят в среде жидкого углеводорода. Чаще всего для этого используют -гептан. Горячий н-гептан — избирательный (селективный) растворитель атактического полипропилена. В качестве растворителя можно использовать легкокипящие фракции углеводородов, например пропан-пропиленовую ( 30% СдИв и 70% СдНа). Полимеризация пропилена проходит с выделением тепла 333 ккал/кг, что в 2,5 раза меньше, чем при полимеризации этилена, поэтому тепло отводится более легко. Практически отвод тепла достигается охлаждением реактора. [c.56]

    Растворитель играет существенную роль при суспензионной полимеризации, так как растворимость пропилена и атактического полимера в разных растворителях не одинакова. Однако столь же важна и концентрация примесей в растворителе и пропилене. Известно, что ядами катализатора Циглера — Натта являются вода, кислород, монооксид и диоксид углерода, ал-лен, ацетилен, оксисульфпд углерода и серусодержащие органические соединения. Для достижения максимальной эффективности катализатора важно поддерживать концентрацию этих ядов на как можно более низком уровне — обычно менее нескольких частей на миллион. Между тем не всегда можно предсказать действие каждого яда. Например, в табл. 5 показано влияние содержания воды в гептане на промышленный катализатор Т1С1з. Хотя активность снижается с ростом концентра- [c.200]

    Чтобы добиться хорошего суспендирования и смешения компонентов многофазной системы, скорость перемешивания при полимеризацит должна быть не ниже 500 об/мин. Хотя при используемых низких давлениях (3,5—10 атм) и температурах (50—75°С) производительность катализатора невысока, показатель стереорегулярности, как правило, превышает 90%. Однако для достижения показателя стереорегулярности 96— 97%, требуемого большинством промышленных потребителей, из полипропилена, полученного суспензионной полимеризацией, приходится экстракцией удалять атактический полимер. Поэтому для процесса полимеризации в суспензии необходимы большие капитальные и текущие затраты, связанные с очисткой и рециркуляцией растворителя, обезвреживанием сточных вод, экстракцией полимера и его обеззоливанием. В настоящее время процесс полимеризации в суспензии используется в США компаниями Геркулес , Амоко , Экссон и ЮСС кемиклс . [c.202]

    Первый вариант технологии заключается в следующем. В реактор с мешалкой или циркуляционным насосом вводят необходимое количество пластификатора, нафетого до температуры выше нижней критической температуры растворения атактического полипропилена в данном пластификаторе (растворителе). Вводят необходимое количество полипропилена, после этого смесь перемешивают до полного его растворения. Добавляют битум, разогретый до необходимой температуры, и снова всю смесь перемешивают до получения однородной массы. Качество полученного ПБВ корректируется соотношением компонентов. Эксплуатационные свойства исходных битумов и полу 1енных ПБВ приведены в табл. 1. Показатели качества образцов асфгшьтобетонов, полученных на их основе - в табл. 2. [c.73]

    Позднее представления о направляющей роли конформации образующейся молекулярной цепи в процессе полимеризации были перенесены на винильные мономеры. С этой позиции рассматривается влияние природы растворителя и температуры на стереоспецифичность полимеризации винильных соединений. Так, было показано, что полимеризация стирола в присутствии трифенилметилкалия в бензоле приводит к образованию атактического полистирола, а с тем же катализатором в гексане получается стереорегулярный полимер. С позиции так называемой спиральной полимеризации это объясняется большей устойчивостью спиральной конформации растущих макромолекул полистирола в плохом по сравнению с бензолом растворителе — гексане. Аналогичным образом объясняются образование стереорегулярного полистирола при полимеризации в присутствии бутиллития при —30 °С в среде углеводородов и отсутствие стереоспецифичности при полимеризации стирола с этим катализатором при более высокой температуре. Такое новое направление в изучении механизма стереоспецифической полимеризации является чрезвычайно интересным, хотя для создания стройной концепции еще мало экспериментальных данных. [c.93]

    Кристаллическая структура полимера. Кристаллические полимеры растворяются значительно хуже, чем аморфные. Это объясняется наличием большого межмолекулярного взаимодействия глава VI). В этом с,пучае для отрыва цепей друг от друга необходимо одновременно нарушить большое число связей, что требует значительной затраты энергии, Поэтому при комнатных температурах кристаллические полимеры, как правило, не растворяются даже в жидкостях, сходных по полярпости. Папример, при 20 С полиэтилен ограниченно набухает в к-гексаяе и растворяется в нем только при нагревании изотактический кристаллический полистирол не растворяется при комнатной температуре в растворителях, пригодных Для атактического полистирола—-для растворения его также необходимо нагреть, Политетрафторэтилен не растворяется ни в одном иэ известных растворителей пи при каких температурах. [c.324]

    Атактические и стереоблочные фракции удаляют из полимера чкстракцией. Растворимость этих фракций зависит от применяемого растворителя и температуры. Экстракция обычно производится алифатическими углеводородами. Хлорированные растворители отличаются несколько лучшей растворяющей способностью, однако они отщепляют хлористый водород, который и в незначительных концентрациях вызывает коррозию оборудования и привносит в полимер следы железа, существенно снижающие его термоокис-лительную стойкость. [c.50]

    При нагревании смеси до 70° С в течение 30—60 мин остатки катализатора разлагаются и переходят в растворимые соединения (по всей вероятности, в А1(0К)з и Т1С1з-6КОН). Затем производят центрифугирование маточного раствора, который наряду с остатками катализатора содержит и атактические фракции. Отжатый полимер заливают чистым растворителем и снова подают на центрифугу. После двух- или трехкратного повторения цикла экстракции и центрифугирования достигают очень хороших результатов. Во многих патентах для отмывки остатков катализатора в водной и безводной среде предлагаются соединения, образующие устойчивые комплексы с алюминием и титаном (гликоль, ацетилацетон, щавелевая и лимонная кислоты и т. п.). [c.52]

    Стереоизомеры полипропилена (изотактические, синдиотакти-ческие, атактические и стереоблочные) существенно различаются ио механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, температура плавления 80° С, плотность 0,85 г см [2], хорошо растворяется в диэтиловом эфире и в холодном н-геитане. Изотактический полипропилен по своим свойствам выгодно отличается от атактического в частности, он обладает более высоким модулем упругости, большей плотностью (0,90—0,91 г см ), высокой температурой плавления (165—170° С) [5], лучшей стойкостью к действию химических реагентов и т. п. В отличие от атактического полимера он растворим лишь в некоторых органических растворителях (тетралине, декалине, ксилоле, толуоле), причем только при температурах выше 100° С. Стереоблок-полимер иолиироиилена прн исследованиях с помощью рентгеновских лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушения в кристаллической решетке [4]. [c.64]

    Известно, что стереоизомеры очень трудно не только отделить друг от друга, но и определить аналитически, поскольку переход от макромолекул изотактического строения к атактической структуре является плавным. Поэтому предложенную Натта с сотрудниками [2] методику определения содержания отдельных структур в полипроиилене путем последовательного экстрагирования различными растворителями следует считать приближенной. Экстракция приводит одновременно к разделению полимера по молекулярному весу. Лучше всего это видно на примере стереоблочиой фрак- [c.96]

    Запатентованы процессы пероксидации полн-а-олефинов молекулярным кислородом при относительно низких температурах (до 80°С) и давлениях выше I кгс/см в растворе органических растворителей (кумола с небольшой добавкой метанола) [44]. Например, при окислении в этих условиях атактического полипропилена образуется полимер с молекулярным весом 11 000, содержащий одну перекисную группу на 47 мономерных звеньев. После восстановления гидроперекисных групп до гидроксильных полипропилен можно сшивать днизоцианатами [45]. [c.130]

    Реакция может быть осуществлена при обычной температуре непосредственно в растворе атактического полипропилена или на поверхности пленок волокон или формованных изделий, набухших в РС1з (иногда в смеси с органическим растворителем) под действием кислорода [115—118]. [c.139]

    Прививка может быть осуществлена в гомогенной среде (в случае пероксидированного атактического полипропилена — в растворе органического растворителя) илн в гетерогенной фазе (для изотактического нолннронилена — новерхностно-окнсленные пленки, волокна, порошкообразный полимер), причем мономер диффундирует к центрам реакции из жидкой и газовой фаз. [c.149]

    Экстракционная ТСХ (ЭТСХ) основана на селективном растворении полимера в области стартового пятна по принципу все или ничего . Используют однокомпонентный растворитель, который позволяет разделить в стартовом пятне полимерные фракции, С помощью ЭТСХ разделяют изо- и атактический полистирол и полиметилметакрилат, транс-1,4-, цис-1,4-и 1,2-полибутадиен, блок-сополимеры стирол -метилметакрилат и соответствующие гомополимеры, [c.101]

    В работе [13] памп приведены результаты исследования свойств смесей ППММА с атактическими сополимерами метплме-такрилата и метакрпловой кислоты (СПЛ ММА-МАК) в среде диметилформамида. Предметом настоящего исследования является изучение реологических н термодинамических свойств растворов стереоизомеров в среде растворителей ацетона, диоксана и диэтилфталата. [c.98]


Смотреть страницы где упоминается термин Растворители атактические: [c.145]    [c.113]    [c.198]    [c.199]    [c.202]    [c.203]    [c.948]    [c.288]    [c.474]    [c.55]    [c.97]    [c.121]    [c.134]    [c.101]    [c.984]    [c.324]   
Физика макромолекул Том 3 (1984) -- [ c.149 , c.401 ]




ПОИСК







© 2024 chem21.info Реклама на сайте