Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Предельные углеводороды, нитрование

    Предельные углеводороды (алканы). Гомологический ряд. Структурная изомерия. Углеводородные радикалы. Гибридное состояние углерода р . Номенклатура. Получение алканов. Химические свойства. Реакции замещения ионные и радикальные. Галогенирование, сульфохлорирование и сульфоокисление. Нитрование. Окисление алканов. Отдельные представители алканов. Нефть и продукты ее переработки. Органические вяжущие и их применение в строительстве. УФ и ИК спектры предельных углеводородов. [c.169]


    Второй реакцией, оказавшей очень сильное влияние на познание химической природы парафинов и на направления использования их как химического сырья, явилась реакция нитрования. Коновалов [31—33] показал, что при нагревании предельных углеводородов в запаянных трубках с разбавленной (13%-ной) азотной кислотой при 130—140° С углеводороды вступают в реакцию замещения атом водорода предельного углеводорода замещается группой N02 и в результате получается нитропроизводное парафинового углеводорода. [c.56]

    Напишите схемы реакций, протекающих при действии азотной кислоты (реакция нитрования, или реакция М. И. Коновалова) на предельные углеводороды  [c.15]

    Время жизни свободных радикалов алифатического ряда очень небольшое. Например, полупериод существования радикала метила СНз- равен 0,006 с (сравните время жизни атомарного водорода составляет 0,1 с). Однако именно свободные алифатические радикалы с малым временем жизни имеют наибольшее значение. С участием таких радикалов протекают реакции галогенирования, нитрования, сульфохлорирования предельных углеводородов, а также процессы горения, термического разложения (пиролиза), взрыва полимеризации, деструкции и т. д. Многие реакции, идущие в живом организме, также осуществляются, по-видимому, при участии свободных радикалов. [c.29]

    Нитрование (действие азотной кислотой). При обычной температуре предельные углеводороды с концентрированной азотной кислотой практически не взаимодействуют. При нагревании эта кислота действует как окислитель. Впервые реакцию нитрования парафинов провел в 1888 г. М. И. Коновалов (эта реакция и получила его имя), действуя на парафины разбавленной азотной кислотой при нагревании ( 140°С)  [c.52]

    Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например  [c.227]

    Реакция с азотной кислотой (реакция нитрования). Концентрированная азотная кислота при нагревании окисляет предельные углеводороды, а на холоду не действует на них. В 1889 г. М. И. Коновалов открыл, что при действии на предельные углеводороды разбавленной азотной кислоты, но при нагревании и под давлением, возможно замещение водорода в углеводородах на остаток азотной кислоты —NOj (нитрогруппу) [c.53]

    Впоследствии было разработано нитрование предельных углеводородов, основанное на взаимодействии их паров с парами азотной кислоты. Например, при нитровании этана образуется нитроэтан [c.53]


    Мы увидим далее (стр. 332), что реакция нитрования, так же как и реакция сульфирования, наиболее характерна для ароматических соединений. Однако в последние десятилетия практическое значение приобретает и нитрование предельных углеводородов (в этой области большую роль сыграли работы А. И. Титова, П. П. Шорыгина, А. В. Топчиева и др.). [c.54]

    Нитрование предельных углеводородов проводится при действии на углеводороды разбавленной азотной кислотой при нагревании и повышенном давлении (реакция М.И. Коновалова)  [c.407]

    Нитросоединения жирного ряда могут быть получены при непосредственном действии азотной кислоты или окислов азота на предельные углеводороды. Прямое нитрование углеводороде жирного ряда и нафтеновых углеводородов изучено М. И. Коноваловым (реакция Коновалова). С. С. Наметкин объяснил механизм этой реакции и широко использовал ее для установления строения терпеновых углеводородов. Однако метод прямого нитрования мало пригоден для препаративных целей, так как он не дает возможности получить достаточно однородный продукт. Лучшие результаты получаются при действии азотистокислых солей на галоидопроизводные углеводородов, например [c.112]

    Нитрование предельных углеводородов проводится по реакции М. И. Коновалова  [c.405]

    Детальное рассмотрение работ по нитрованию ароматических и непредельных углеводородов, содержащееся в ряде обзорных статей и монографий (см., например, [150]), выходит из рамок настоящего раздела, который посвящен нитрованию предельных углеводородов. Эта реакция в настоящее время является основой промышленного производства низших нитрона-рафинов. [c.575]

    Ненасыщенные соединения алифатического ряда легче подвергаются нитрованию, чем предельные углеводороды. Сравнительно легко нитруется изобутилен [31]. Ненасыщенные боковые цепи ароматических соединений нитруются легче, чем сами ароматические ядра. Также легко нитруются ацетиленовые углеводороды. Из ацетилена при действии концентрированной азотной кислоты получается, наряду с другими продуктами, тринитрометан [32]. [c.14]

    Азотная кислота при обыкновенной температуре почти не действует на предельные углеводороды при нагревании действует как окислитель. Однако, как показал М. И. Коновалов, слабая азотная кислота при нагревании под повышенным давлением действует нитрующим образом. При реакции- нитрования метана получается почти исключительно нитрометан  [c.56]

    Предельные углеводороды легко нитруются в газовой фазе при 150—175 °С двуокисью азота или парами азотной кислоты при этом частично происходит и окисление. В настоящее время существуют промышленные установки для нитрования предельных углеводородов в газовой фазе. [c.56]

    Отсутствие до недавнего времени удобных и дешевых методов получения нитросоединений жирного ряда было основным препятствием широкого внедрения этого класса соединений в практику. Причиной этих трудностей является большая инертность парафиновых углеводородов по сравнению с ароматическими углеводородами к действию азотной кислоты. В течение многих лет попытки ввести нитрогруппу в ациклические углеводороды прямым действием азотной кислоты не давали положительных результатов (это также относится к нитрованию боковой цепи ароматических углеводородов). Однако широкая доступность парафиновых углеводородов (особенно СССР богат естественными газами, которые и представляют источники низших парафиновых углеводородов) заставила многих химиков обратиться к изучению вопроса переработки предельных углеводородов в нитропарафины. Этот класс соединений может быть использован в различных областях химической промышленности. Кроме того, нитропарафины являются весьма реакционноспособными веществами, и на их основе можно синтезировать многие новые, весьма ценные химические продукты, из которых некоторые уже нашли себе применение. [c.11]

    Дальнейшее развитие, усовершенствование и техническое освоение методов нитрования предельных углеводородов, а также нитрование в газовой фазе относятся к актуальным вопросам современной прикладной химии. [c.16]

    Автор утверждает, что все разнообразие конечных продуктов взаимодействия окислов азота и азотной кислоты с предельными углеводородами и их производными есть результат дальнейшего превращения в условиях нитрования нитрозосоединений, эфиров азотистой кислоты, спиртов и в меньшей степени нитросоединений. [c.254]

    При гетерогенном проведении реакции нитрование. ароматических соединений протекает в кислотном слое нитрование предельных углеводородов протекает в углеводородном слое. [c.264]

    Скорость нитрования ароматических углеводородов в парах значительно меньше, чем в жидкой фазе в случае предельных углеводородов скорость нитрования в парах и жидкой фазе почти одинакова. [c.264]

    Добавка ртутных солей при нитровании ароматических углеводородов азотной кислотой умеренной концентрации ускоряет реакцию, а при нитровании предельных углеводородов не влияет на ход процесса. [c.264]

    При нитровании ароматических соединений (азотной кислотой, нитрующей смесью) выход нитропроизводных, как правило, близок к теоретическому, в то время как при нитровании предельных углеводородов выход соответствующих мононитропроизводных составляет не более 60% от теории наряду со значительным количеством образовавшихся продуктов окисления. [c.264]


    Нитрование ароматических соединений в ядро представляет ионно-комплексную реакцию, а нитрование предельных углеводородов — радикально-молекулярную реакцию. [c.264]

    Известно, однако, что такой крекинг предельных углеводородов происходит с измеримыми скоростями лишь при температурах, значительно превышающих температуры парофазного нитрования, и, следовательно, не может служить источником олефинов в этом случае. Отсюда следует, что в ходе нитрования создаются условия, благоприятствующие образованию олефинов. [c.307]

    В соответствии с правилом Марковникова в первую очередь замещается нитрогруппой атом водорода, находящийся у наименее гидрогенизированного атома углерода. Коновалов установил, что в парафинах нормального строения группа N02 при прочих равных условиях предпочтительно направляется в а-положение к метильной группе. Если же в углеродной цепи имеется фенильная группа, то группа N02 становится в и-положение к этой последней, т. е. к фенильной группе. При нитровании парафинов, содержащих третичные атомы углерода, нитрогруппой преимущественно замещается водород, стоящий у третичного атома углерода. В этом случае в продуктах реакции третичные нитросоединения составляют 75—80%, а вторичные 20—25%. Такая избирательность (хотя и не полная) нитрования парафинов по третичному атому углерода была использована С. С. Наметкиным для доказательства строения парафиновых углеводородов, выделенных из нефти, каменноугольной смолы и озокерита [134—381]. При помощи этого метода можно установить соотношение в твердых предельных углеводородах структур нормального и разветвленного строения. Однако точные количественные результаты по этому методу получить не удается, так как реакция нитрования в большей или меньшей степени осложняется реакциями окисления, приводящими к глубокой деструкции части взятых для нитрования углеводородов. [c.56]

    Сопоставление состава и свойств туймазинского парафина и индивидуальных парафинов С25—Сзо нормального строения показывает, что более низкомолекулярные фракции его (молекулярный вес 300—400, температура плавления 49—60° С) состоят преимущественно из предельных углеводородов нормального строения во фракциях парафина с молекулярным весом выше 400 заметно повышается доля разветвленных структур предельных углеводородов. Так, по данным, полученным при нитровании, фракция туймазинского парафина молекулярного веса 454 температура плавления 66° С) содержала уже только 56% углеводородов нормального строения. Около половины ф )акции составляли разветвленные формы парафиновых углеводородов, что приближает ее к шорсинскому церезину. Элементарный состав фракции с температурой плавления 68,8° С отвечает общей формуле H2n+i,5- Это указывает, что в ее составе уже появились парафиновые углеводороды с циклическими заместителями в длинной цепи. Таким образом, результаты исследования парафина из туймазинской нефти в общем согласуются с данными, полученными американскими исследователями для парафинов мидконтинентской нефти и советскими исследователями для парафинов грозненской нефти. [c.96]

    Работы по изученшо химического состава кавказских нефтей были продолжены М. И. Коноваловым (1858—1906 гг.) и С. С. Наметкиным (1876—1950 гг.). Заслуга М. И. Коновалова состоит в изучении им реакций предельных углеводородов, образно названных им же химическими мертвецами . М. И. Коновалов поставил себе задачу найти способ их оживления . В 1889 г. он разработал реакцию нитрования парафиновых (алкановых) углеводородов разбавленной азотной кислотой. [c.15]

    Реакция Коновалова. В 1887—1893 гг. М. И. Коновалов разработал метод нитрования предельных углеводородов. Он показал, что слабая азотная кислота при нагревании в запаянных сосудах действует па предельные углеводороды (парафин) с образованием питросоедипений  [c.250]

    Получение нитросоедипеиий нитрованием предельных углеводородов по реакции Коновалова (стр. 38) обычно проводится в газовой фазе прн температуре 150—475° С. [c.187]

    Детально изучил нитрование различных предельных углеводородов М. И. Коновалов [163]. В большинстве работ он проводил эту реакцию, действуя на углеводород слабой азотной кислотой (около 12%), в запаянных трубках. Выходы получаемых таким образом питросоединепий изменялись в довольно широких пределах в зависимости от свойств исходного углеводорода и условий проведения реакции, но в среднем они равнялись 50—60% по сырому продукту и 30—40% по чистым нитросоединениям, считая на углеводород, израсходованный в реакции. [c.577]

    Важным этаном в развитии реакции нитрования предельных углеводородов явилось проведение ее в паровой фазе. П. П. Шорыгип и А. В. Топчиев описали нитрование паров циклогексана окислами азота [166] ими была также показана возможность получения таким путем питропроизвод-пых и-гексапа [167]. Урбанский и Слон сообш,или о синтезе нитросоединений взаимодействием некоторых парафинов и циклогексана с окислами азота [168], Хасс, Ходж и Вандербилтосуществили нитрование этапа, пропана и бутана царами азотной кислоты. Эта реакция проводилась при температуре около 400° и времени контакта углеводородов и азотной кислоты около 1 сек. [169]. [c.578]

    Михаил Иванович Коновалов (1858—1906) окончил в 1884 г. Москов ский университет. В 1896—1899 гг.—профессор Московского сельскохозяйственного института, с 1899 г.—профессор Киевского Политехнического инсти-гута. Первые работы М. И. Коновалова были посвящены изучению природы кавказской нефти. Он разработал методы выделения, очистки и получения различных производных нафтенов (стр. 545), изучал действие брома и бромистого алюминия на нафтены. В 1888 г, Коновалов открыл нитрующее действие разбавленной азотной кислоты при нагревании ее с предельными углеводородами (стр. 358). Исследования в этой области он обобщил в докторской диссер гации Нитрующее действие азогной кислоты на углеводороды предельного ха рактера (1893). Предложенный им метод позволил получить и исследовать многочисленные новые нитросоединения. М. И. Коновалов разработал способ получения из нитросоединений оксимов (стр. 194), спиртов, альдегидов и кетонов, Он использовал также реакцию нитрования для определения строения углеводородов, создал метод разделения нитросоединений и их очистки [c.56]

    В результате дегидрирования предельных углеводородов получаются химически активные непредельные углеводороды, например этилен, пропилен и т. д. При окислении образуются кислородсодержащие продукты спирты, альдегиды, кетоны и другие при гало-. идировании или нитровании — соответственно галоидо- или нитропроизводные. Гидратацией углеводородов можно получить спирты. При процессах полимеризации образуются ценные высокомолекулярные соединения. Алкилирование дает такие важные продукты, как изонронилбензол, алкилат и другие. Упомянутые реакции протекают при разных температурах, давлениях и катализаторах. Органический синтез имеет непсчерпаелгые возможности для получения самых разноо )ра <ных продуктов. [c.210]

    В 1888 г. выдающемуся русскому химику И. Коновалову впервые удалось успещно осуществить нитрование предельных углеводородов разбавленной азотной кислотой на примере нонанафтена — одного из, циклических углеводородов, входящих в состав кавказской нефти. Нонавафтен имеет следующую -структурную формулу  [c.232]

    С. С. Наметкин [91 ] при исследовании нитрования предельных углеводородов слабой азотной кислотой обратил внимание на значение в этом процессе относительного количества азотной кислоты. Этот факт в отличие от концентрации азотной кислоты и температуры, влияющих на скорость реакции, определяет главным образом направление реакции, т. е. характер обра- [c.242]

    Благодаря координационной ненасьш енности и наличию кратных связей в ароматических ядрах реакция их нитрования начинается со взаимодействия нитрующего агента с атомом углерода в случае предельных углеводородов действие нитрующего агента (NOa) направлено на атом водорода. [c.264]

    После опубликования работ П. П. Шорыгина и А. В. Топчиева по нитрованию ароматических соединений двуокисью азота Урбанский и Слон [53, 54] исследовали реакцию нитрования алифатических предельных углеводородов двуокисью азота в газовой фазе. Смесь паров N2O4 и углеводорода пропускали через стеклянную трубку, наполненную стеклянными кольцами, которую нагревали в электропечи до температуры около 200°. Летучие продукты реакции конденсировались. Избыток N2O4 удаляли на холоду током воздуха и остаток, состоявший из нитропродуктов и непрореагировавшего углеводорода, промывали водой. После сушки над NaaSO из этой смеси отгоняли углеводород. Оставшуюся смесь нитропродуктов фракционировали в вакууме. [c.380]

    Показано также, что при нитровании предельных углеводородов в указанных выше условиях основными продуктами реакции являются первичные нитросоединения, содержащие группу H2NO2 (эти продукты идентифицировались по образованию нитроловых кислот и восстановлению последних до [c.380]


Смотреть страницы где упоминается термин Предельные углеводороды, нитрование: [c.80]    [c.80]    [c.574]    [c.13]    [c.16]    [c.238]    [c.238]    [c.298]   
Нитрование углеводородов и других органических соединений (1956) -- [ c.13 , c.14 , c.237 , c.253 ]

Нитрование углеводородов и других органических соединений (1956) -- [ c.13 , c.14 , c.237 , c.253 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы Парафины, Предельные углеводороды нитрование

К вопросу о взаимосвязи между реакциями нитрования н окисления азотной кислотой углеводородов предельного характера (совместно с Ii. С. Забродиной)

Нитрование предельных и жирно-ароматических углеводородов

Нитрование предельных, жирноароматических и ненасыщенных углеводородов азотной кислотой

Предельные бициклические углеводороды, нитрование

Предельные углеводороды

Предельные углеводороды, нитрование в газовой фазе

Предельные углеводороды, нитрование механизм

Углеводороды Предельные углеводороды

Циклические предельные углеводороды, нитрование



© 2025 chem21.info Реклама на сайте