Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции в ароматическое ядро

    Реакции ароматического ядра [c.338]

    Обладая подвижной шестеркой я-электронов, ароматическое ядро является удобным объектом для атаки электрофильных реагентов. В своей начальной стадии реакции ароматического ядра напоминают реакции присоединения к кратным связям. Отличие заключается в том, что затем вместо присоединения аниона идет отщепление протона, благодаря чему восстанавливается особо устойчивая, энергетически выгодная ароматическая система связей, [c.116]


    РЕАКЦИИ АРОМАТИЧЕСКОГО ЯДРА. Гидроксильная группа является источником электронов для ароматического ядра фенолов, которые в результате этого легко вступают в реакции электрофильного ароматического замещения. Все процессы, рассматриваемые в настоящем разделе, обусловлены высокой электронной плотностью. [c.296]

    III. 2. Реакции ароматического ядра [c.38]

    РЕАКЦИИ АРОМАТИЧЕСКОГО ЯДРА [c.164]

    Для него характерны как обычные реакции спиртового (но не фенольного) гидроксила, так и реакции ароматического ядра (группа СНгОН является заместителем первого рода). [c.206]

    Вполне понятно, что фенолокислоты проявляют одновременно свойства фенолов и ароматических кислот, а жирноароматические оксикислоты, имеющие гидроксил в боковой цепи, проявляют все свойства, характерные для обычных оксикислот и дают еще реакции ароматического ядра. [c.305]

    Реакции замещения ядра. Выше был приведен ряд реакций функциональной группы ОН. Однако для фенолов характерны также реакции ароматического ядра, главным образом реакции замещения. Последние протекают значительно легче, чем у ароматических углеводородов. Нитрование фенола можно осуществить разбавленной азотной кислотой, тогда как в случае бензола необходима смесь азотной и серной кислот. Таким образом, группа ОН является заместителем, активирующим содержащее ее ядро. Новые заместители входят в орто- и пара-положения относительно фенольного гидроксила. [c.475]

    Реакции ароматического ядра фенолов [c.104]

    РЕАКЦИИ АРОМАТИЧЕСКОГО ЯДРА ФЕНОЛОВ [c.105]

    Все эстрогенные гормоны имеют фенольную группировку, а экви-ленин, в частности, 5-нафтольную, что легко устанавливается обычными реакциями ароматического ядра. [c.614]

    Реакции ароматического ядра, имеющего диазогруппу [c.89]

    Взаимодействием хлорпарафина с ароматическим углеводородом, как ксилол, нафталин И т, д., в присутствии безводного хлористого алюминия по реакции Фриделя — Крафтса. При этом в зависимости от условий процесса в ароматическое ядро вступает одна или несколько алкильных групп [225]. [c.235]

    Гидрирование аренов изучали многие исследователи. Однако в стереоспецифическом аспекте эта реакция обсуждена еще недостаточно, так как большинство работ носит чисто препаративный характер. В основном изучено гидрирование ди- и полиалкилбензолов на платиновых и никелевых катализаторах. Оказалось, что в присутствии различных катализаторов наряду с цис-то-мером образуются транс-изомеры. Между тем, казалось бы, что простое присоединение шести атомов водорода к ароматическому ядру при его плоскостной адсорбции должно приводить исключительно к цис-форме. Поэтому основной интерес здесь представляют следующие вопросы как получаются транс-изомеры циклогексанового ряда, через какие промежуточные стадии идет их образование, имеет ли место десорбция (хотя бы частичная) этих промежуточных соединений в объем с последующей повторной адсорбцией на катализаторе или же все стадии проходят непосредственно в адсорбированном слое. [c.46]


    Прежде чем рассматривать современное объяснение механизмов реакций, включая и замещение в ароматических соединениях, необходимо кратко остановиться на современных представлениях об электронной структуре ароматического ядра. [c.392]

    Далее. Дьюар (XLH) предположил, что гг-комплекс является наиболее важным промежуточным соединением в реакции замещения в ароматическом ядре. Следовательно,, заключил он, скорость замещения в ароматическом ядре будет идти параллельно со стойкостью тг-комплекса. Весьма вероятно, что такие тг-комплексы должны присутствовать при замещении в ароматическое ядро. Однако с точки зрения данных, приведенных в предыдущей части, представляется более вероятным, что скорость за- [c.408]

    Общая скорость и кинетический тип реакции нитрования зависят от соотношения между скоростями образования нитроний-ионов и замещения в ароматическом ядре  [c.300]

    Природа группы, уже присоединенной к ароматическому ядру, определяет положение сульфогруппы и, в какой-то мере, скорость реакции. [c.316]

    Нитро- и сульфогруппы снижают реакционную способность ароматического ядра поэтому сульфирование нитропроизводных или введение еще одной сульфогруппы требует более энергичных условий реакции. [c.316]

    Высказано предположепие о возмонпклти перевода реакций ароматического ядра с ионного на радикальный механизм. [c.615]

    В работе [274] подробно исследованы механизм и кинетика деалкилирования толуола с водяным паром на алюмородиевом катализаторе. Авторы пришли к выводу, что толуол и вода адсорбируются на разных центрах углеводород, вероятно, адсорбируется на ЯЬ-центрах, а вода — на А12О3. Второй важный вывод заключается в том, что при выборе кинетической модели деалкилирования толуола с водяным паром необходимо учитывать роль продуктов реакции, в частности СО. Полагают, что образование СО сильнее тормозит реакцию расщепления ароматического ядра, чем процесс деалкилирования. Квантовохимическое рассмотрение механизма деметилирования толуола на нанесенных металлах УП1 группы проведено в работе [275]. [c.178]

    Для осуществления реакции на поверхности Р1-ката-лизатора атом С-3 должен попасть на поверхность катализатора, т. е. расположиться в одной плоскости с ароматическим ядром и атомом С-1. Такое расположение атомов С-1 и С-3 предопределяет нахождение атома С-2 в той же плоскости. Таким образом, в момент циклизации для алифатической части молекулы нет другой стерической возможности кроме нахождения в одной плоскости с ароматическим кольцом. Сб-Дегидроцикли-зация о-Ллтолуола в присутствии различных Р1-ката-лизаторов [59, 106] также является достаточно веским доказательством плоскостной адсорбции переходного комплекса, образующегося в ходе реакции. [c.219]

    Восстановление протекает быстро и количественно, не затрагивая ароматического ядра, за исключением образования полимеров. Однако при этом имеют местэ побочные реакции. При восстановлении стирола образуется до 50% полимеров. Таких же результатов следует ожидать для замещенных в кольце стирэлов однако стиролы, замещенные в боковой цепи, дают продукты, почти свободные от полимеров. [c.483]

    Третий тип конденсации (межмолекулярная конденсация, затрагивающая ароматическое ядро) уже описан выше, как одна из наиболее важных реакций незамещенных ароматических углеводородов. Подобная конденсация имеет место и в случае алкилированных ароматических углеводородов. Так, толуол среди прочих продуктов реакции дает дито-лил. Как правило, для реакций этого типа требуются более высокие тем- [c.108]

    При аналогичной обработке ароматических углеводородов, содержащих более длинные алкильные группы, переход этих групп в неизменном виде маловероятен. Возможно, что эти группы отщепляются посредством электронной перегруппировки, образуя преимущественно соответствующие олефины и водород раньше, чем радикал сможет вступить в реакцию с другим ароматическим ядром. Нет сомнения в том, что образованная молекула олефина может вновь алкилировать ароматические ядра, в результате чего получаются те же конечные продукты, как если бы группа перешла в неизменном виде хотя условия, благоприятные для диспронор-ционирования, для алкилирования олефинами неблагоприятны. [c.111]

    Нафтеновоароматические углеводороды. Поведение нафтеновых производных ароматических углеводородов при пиролизе в общем аналогично реакциям алкилированных ароматических углеводородов с открытой цепью. Имеются два основных тина производных 1) нафтеновые кольца, присоединенные к ароматическому ядру простой связью и 2) нафтеновые кольца, конденсированные с ароматическими ядрами. [c.111]

    Крекинг ароматических углеводородов. Каталитический крекинг ароматических углеводородов отличается большим своеобразием. Ароматические ядра сами по себе не подвергаются разрыву, так что реакции разрыва углерод-углеродной связи ограничиваются почти исключительно замещенными алкил- и циклоалкилгруппами и насыщенными (поли-метиленовыми) кольцами, конденсированными с ароматическим кольцом. [c.129]


    Существуют два типа окислительных реакций непредельных углеводородов 1) прямая атака двойных или тройных связей электрофиль-пыми реагентами, например озоном, фотосенсибилизированным молекулярным кислородом, органическими перкислотами, свободными гидроксильными радикалами, активированной светом перекисью водорода или различными неорганическими перекисями, способными образовывать неорганические перкислоты, перманганатом, неорганическими окислами, такими как четырехокись осмия, пятиокись ванадия, окись хрома и двуокись марганца, солями ртути, иодобензоатом серебра, диазоуксусным эфиром и подобными веществами 2) косвенная атака метиленовых групп, смежных с двойными и тройными связями и с ароматическими ядрами, такими реагентами, как молекулярный кислород, органические перекиси, двуокись селена, тетраацетат свинца,хлористый хромил, трет-бутил-хромат, бромсукцинимид и т. д. Первый тип реакций протекает по ионному механизму, второй — по свободнорадикальному механизму. Некоторые из этих реакций будут рассмотрены в следующих разделах. [c.347]

    Обзор реакций озонирования будет неполным без рассмотрения важных исследований Уибо и его школы ио кинетике озонирования ароматических углеводородов [20, 21]. Озонирование ароматических углеводородов должно протекать подобно озонированию алифатической двойной связи. Но так как в ароматическом кольце нет двойных связей, то некоторые голландские исследователи [9, 10] предположили, что под влиянием поляризованной молекулы озона происходит такое распределение эт-электронов в ароматическом ядре, когда одна пара перемещается к тому углероднод1у атому, который подвергается атаке молекулой озона, а остальные я-электроны распределяются на остальных пяти углеродных атомах углерода, занимая самое низкое энергетическое положение. На основе кинетических изменений, Уибо и другие [1, 18, 23] сообщили, что триозонид бензола образуется в результате трех биомолекулярных реакций, первая из которых протекает значительно медленнее, чем последующие две, и поэтому общая скорость реакции определяется скоростью первой реакции. Константа скорости для бензола нри температуре—30° С была определена в 5 X 10 (миллимоль /мин. ). Механизм реакциимо-жет быть изображен следующим образом  [c.353]

    Последовала широкая дискуссия, происходит лп замощение в ароматическом ядре через образование промежуточного соединения такого типа, как прелполагали Пфейфер и Внциигор, или же оно включает лишь стадию простого переходного состояния. Например, Ипголд предположил, что при замещении в ароматическом кольце реагент атакует кольцо в боковом направлении к плоскости кольца, образуя переходное состояние, в котором входящая в реакцию и отщепляемая группы лежит в плоскости, нерпоидикулярной к плоскости кольца [89]. [c.407]

    Механизм XLHI применим к реакциям замещения, когда электрофильный реагент Z" существует как таковой. Механизм XLVI представляет более общий случай, когда электрофильная группа переносится от реагента в кольцо, не переходя в свободное состояние. Эти механизмы, как кажется, способны коррелировать известные факты относительно замещения в ароматическом ядре. Их применение к специфическим реакциям замещения будет рассмотрено ниже. [c.411]

    Учитывая эти факты, подтверждающие карбоний-ионный механизм для третичных алкилпроизводных, а также более раннее рассмотренио механизма электрофильного замещения в ароматическом ядре (XLHI), был предложен следующий детализированный механизм для реакции ароматических соединений с третичными галоидалкилами в условиях реакции Фриделя-Крафтса (LXXX)  [c.437]

    Как отмечалось ранее, в настоящее время структура бензола представляется в виде плоского кольца, состоящего из шести углеродных атомов с орбита п1 тг-злектроиов, расположенными выше и ниже плоскости. Таким образом, ароматическое ядро представляет собой структуру, сравнительно богатую электронами. Эта структура, как таковая, особенно чувствительна к воздействию электрофильных реагентов, несколько менее к воздействию свободных радикалов и наименее чувствительна к воздействию нуклеофильных реагентов. Действительно, известно очень мало реакций замещения нуклеофильными реагентами простых ароматических углеводородов. [c.470]

    Реакции между бензолами и парафинами вносят некоторую ясность в химизм реакций с хлористым алюминием. Разрыв угле-род-углеродной связи дает парафины и олефпны с меньшим числом углеродных атомов кроме того, олефины алкилируют ароматические ядра [619]. Исследование продуктов реакции показывает, что нормальные структуры подвергаются разрыву связей у любого атома углеродной цепочки. В реакции с бензолом изооктан дает только изобутан и трет-бушлбензол, в то время как продуктами реакции с н-октаном являются пропан, н- и изобутаны, пентаны, гексаны и этил, пропил и другие алкилбензолы. [c.137]


Смотреть страницы где упоминается термин Реакции в ароматическое ядро: [c.107]    [c.89]    [c.91]    [c.353]    [c.539]   
Курс теоретических основ органической химии (1975) -- [ c.2 , c.2 , c.7 , c.17 ]




ПОИСК







© 2025 chem21.info Реклама на сайте