Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отбор проб процесс

    Б. Метод отбора проб. Одним из наиболее простых методов изучения кинетики химических реакций является метод отбора проб по ходу процесса. Метод состоит в отборе небольших проб реагирующей смеси по ходу реакции и в немедленной обработке этих проб, приводяш,ей к остановке процесса. Затем производится анализ химического состава пробы. [c.61]


    При загрузке катализатора в систему должна быть обеспе-. чена герметизация, исключающая пылевыделение, а сам процесс загрузки должен быть механизирован. После загрузки катализатора в систему рабочую площадку очищают от пыли и просыпавшегося катализатора. При отборе проб катализатора необходимо пользоваться защитными очками и рукавицами. [c.83]

    Автоматический отбор проб Процесс, при котором пробы отбираются непрерывно или через определенные промежутки времени, без участия человека, согласно предварительно определенной программе [c.50]

    Непрерывный отбор проб Процесс, при котором постоянно производится отбор проб из водной массы [c.51]

    Отбор проб Процесс отбора представительной части водной массы, предназначенной для исследования ее определенных характеристик и свойств [c.51]

    При проектировании пробоотборные линии от нескольких точек сводятся в одно помещение, оборудованное вытяжной вентиляцией. Это упрощает процесс отбора проб и повышает его безопасность. Перед взятием пробы необходимо освободить линию пробоотбора от застоявшегося продукта. Для этого отбираемый продукт в течение некоторого времени сливается в специальный сборник либо возвращается в систему. [c.31]

    Периодический отбор проб Процесс отбора отдельных проб в водной массе [c.51]

    Размещают газоанализаторы и сигнализаторы довзрывоопасных концентраций в помещениях технологических установок нефтегазоперерабатывающих заводов в соответствии с Требованиями к установке газоанализаторов и сигнализаторов , утвержденными Миннефтехимпромом СССР. Требования определяют порядок размещения автоматических стационарных непрерывнодействующих сигнализаторов и газоанализаторов и систем сигнализации довзрывоопасных и предельно допустимых концентраций паров и газов в воздухе производственных помещений. В соответствии с требованиями проектные организации определяют тип, число сигнализаторов и газоанализаторов и точки отбора проб паров и газов с учетом местных условий, технологических особенностей процесса и свойств перерабатываемых продуктов. [c.166]

    Из реактора отбирают пробу, в которой определяют содержание сухого остатка, винилацетата и вязкость дисперсии. После отбора пробы процесс ведут в течение 1 ч, при этом в реактор подается оставшееся количество перекиси водорода для проведения более полной полимеризации винилацетата, остаточные количества которого не должны превышать 0,8%. Образовавшуюся дисперсию передавливают азотом через фильтр 14 в стандартизатор 15. [c.140]

    Мероприятия, рекомендуемые для предотвращения подобных взрывов, основаны на контроле накопления окислов азота в аппаратуре низкотемпературного блока, поскольку полностью удалить окислы азота из промываемого газа не представляется возможным. Установлена максимально допустимая норма накопления окислов азота в аппаратуре низкотемпературного блока. В аппаратах типа КР-32 содержание окислов азота, определяемое перманганатным методом, не должно превышать 5 кг. Если расчетное количество окислов азота в аппаратуре достигает 5 кг, то блок должен быть остановлен на отогрев и промывку. Количество накопившихся в аппаратуре окислов азота во многих случаях определяют по их содержанию в газе и расходу через низкотемпературный блок. Такая методика определения количества окислов азота, накапливающихся в аппаратуре, весьма несовершенна, так как анализы проводятся два раза в смену, и не исключена возможность залпового поступления больших количеств окислов азота в периоды между отборами проб газа. Поэтому для повышения безопасности процесса очистки конвертированного и коксового газа необходим непрерывный автоматический контроль содержания окислов азота с записью результатов на диаграмме. [c.23]


    При исследовании абсорбции хорошо растворимых газов (в частности, НР) в единичные капли возникают большие экспериментальные трудности, связанные со значительным влиянием концевых эффектов, способа отбора проб, степени очистки газа от примесей и другими факторами на кинетику процесса. Этим, по-видимому, обусловлены противоречивые результаты, полученные в ряде работ [306—308 и др.]. [c.204]

    На заводе, вырабатывающем твердые паровозные смазки, отбор пробы от сваренной и расфасованной смазки отбирают после полного ее остывания до температуры воздуха в цехе. Не разрешается ускорять процесс остывания смазок на заводе путем выноса их в холодное время года за пределы цеха. Также не разрешается всякий иной способ охлаждения смазки, кроме способов, предусмотренных технологическим процессом варки смазки. [c.254]

    Дренирование, отбор проб и т. п. процессы должны исключать возможность загрязнения воздуха ядовитыми, взрывоопасными веществами. [c.59]

    Исключают, ли процессы дренирования, отбора проб и т. п. возможность загрязнения воздуха ядовитыми и взрывоопасными веществами Установлены ли герметические пробоотборники, если невозможно устройство, автоматического контроля а потоке При отсутствии герметических пробоотборников устроены ли в местах отбора проб местные отсосы (установка пробоотборников в вытяжных шкафах и др.) ( 4—4 Правил и норм, 70 Санитарных правил). [c.305]

    Второй способ отбора пробы газовой фазы заключается в подключении к сосуду равновесия в самого начала опыта пробоотборника высокого давления, соединяющегося в процессе опыта с пространством, занятым газовой фазой. После установления фазового равновесия в системе пробоотборник отключается от сосуда, и проба из него выпускается и анализируется. [c.27]

    В сосуды заливаются щелочь, серная кислота, бром и пирогаллол. Раствор пирогаллола применяется для определения содержания кислорода, так как при работе в газ может попасть воздух (при отборе проб либо в процессе). Определение кислорода производится во всех газовых анализах. [c.214]

    Анализы. Любой анализ потока отражает состояние системы только в момент отбора пробы из этой системы. Результаты анализа потока вообще имеют элемент случайности и будут изменяться во времени, особенно если проба отбиралась неносредственно со скважины, т. е. если поток газА не проходил обработку ни на какой установке. В связи с тем, что результаты анализов — основа проектирования процессов переработки, они должны быть наиболее представительными. Для получения таких данных рекомендуется руководствоваться следующими общими правилами  [c.286]

    Приведенная методика моделирования процесса ректификации была использована при анализе процесса разделения смесей этанол - вода и ацетон - вода для действующих промышленных колонн. Отклонения экспериментальных значений концентраций в точках отбора проб и рассчитанных по данной модели составляли не более 5%, что свидетельствует о точности и корректности предложенной методики. [c.150]

    ИСКЛЮЧИТЬ эти источники погрешностей и обеспечить оптимальные рабочие условия. Идеальным было бы такое решение, которое обеспечивало бы измерение концентрации жидкости в колбе и конденсата пара без отбора пробы. В последнее время для этой цели стали использовать проточный рефрактометр (см. разд. 8.5). Благодаря применению такого рефрактометра Штаге с сотр. [ПО] добился уменьшения времени выхода процесса на стационарный режим в циркуляционной аппаратуре до 10 мин и менее по сравнению с несколькими часами для обычного прибора Отмера [111]. Следует отметить, что всегда выгоднее работать с возможно большим количеством жидкости в колбе, благодаря чему периодический или непрерывный отбор проб жидкости для анализа не препятствует установлению фазового равновесия. [c.88]

    Назначение анализа - получить точный фракционный состав образца или оценить характер протекания технологического процесса. При отборе проб нефтепродуктов могут иметь место два случая. [c.7]

    Отбор проб в процессе транспортирования и хранения готовых нефтепродуктов при их паспортизации. [c.7]

    Отбор проб в процессе контроля за работой технологических установок или при их обследовании. [c.7]

    Сырьевые потоки должны обезвоживаться. Этилхлорид должен осушаться перед применением в силикагелевых адсорберах, циклогексан и бензин должны обезвоживаться азеотропной осушкой до содержания влаги менее 10 мг/л. Все эти продукты, а также масло перед подачей в производство должны быть проанализированы на содержание влаги повторно с отбором проб в отделении синтеза ДЭАХ. Чтобы предотвратить побочные неконтролируемые реакции алкилирования содержащихся в растворителе ароматических углеводородов с хлорэтилом в присутствии алюмоорганиче-ских соединений, нужно применять деароматизированные растворители. Для уменьшения опасности самовоспламенения АОС при разгерметизации оборудования процессы синтеза должны проводиться, как уже упоминалось, в среде углеводородного растворителя. [c.163]


    Если проводить кислородсодержащий газ к гранулам кокса и при этом контролировать расход газа и его химический состав на входе в печь, если организовать также отбор проб продуктов реакции с контролем их состава, будет получена та информация о процессе, которая необходима для составления материального баланса изменение массы контактного вещества (на дериватографе) и химический состав продуктов реакции (на газоанализаторах или хроматографе). На рис. 2.1 при- [c.14]

    Для использования соотношения (5.152) необходимо выполнить ряд условий поскольку пробы должны быть представительными, процесс необходимо осуществить на большой установке (чтобы в результате отбора проб процесс не нарушился) должна быть обоспечена стационарность процесса необходимо знать вид функции источников центров гранулообразования. [c.301]

    В. Метод потока. Изучение сложных кинетических систем затрудняется множеством вторичных реакций, сопровождающих первоначальный процесс. Значение этих реакций часто можно свести до пренебрежимой величины, если ограничить кинетическое изучение начальными периодами развития реакции. В статических системах это может быть достигнуто путем использования метода отбора проб. Весьма простой способ, который в основном и применяется, заключается в пропускании реагентов через зону реакции в течение определенных не слишком больших периодов времени (малых временах контакта). Этот метод допускает накопление значительных количеств продуктов (значительных в абсолютном, но не относительном смысле, так как они малы по сравнению с количеством использованпых реагентов) без значительного проявления вторичных реакций. Данный прием обеспечивает также удобное изучение реакции при таких условиях, когда концентрация реагентов сохраняется постоянной. [c.61]

    А.Н. Гусева и Е.В. Ск>болев разработали классификацию, основанную на представлениях о нефти как природном углеводородном растворе, в котором содержится наибольшее количество хемофоссилий (унаследованных структур) и меньше всего компонентов, изменяющихся под влиянием условий среды существования нефти в залежи, условий отбора пробы, транспортировки и хранения. Однако авторы почему-то назвали классификацию геохимической, хотя в основе ее лежат генетические признаки — хемофоссилии. В этой классификации нефти подразделялись по растворителю на классы — алкановый, циклано-алкановый, алкано-циклановый и циклановый, т. е. по химическому признаку, а классы — на "генетические" типы нефти, обогащенные парафином, затронутые вторичными процессами (осернение), обогащенные легкими фракциями. Однако это в большей мере признаки вторичных изменений нефтей, а не генетических различий. Кроме того, авторы классификации выделяли нефти разной степени катагенеза. Таким образом, А.Н. Гусева и Е.В. Соболев предложили много разных показателей, но их трудно использовать для четкой классификации нефтей. Они ценны главным образом для раскрытия механизма преобразования нефти при тех или иных процессах. Интересны предложенные этими авторами коэффициенты, отображающие соотношения содержания метановых УВ и твердых парафинов с долей углерода в ароматических структурах, которые увеличиваются с возрастанием степени катагенеза. [c.8]

    Данные о соотношениях в бензиновой фракции метановых, нафтеновых, ароматических УВ, индивидуальный состав УВ, различия соотношений индивидуальных УВ (по В.А. Чахмахчеву). Ограничения связаны со значительным влиянием на эту фракцию процессов выветривания, с потерями при миграции УВ (при переформировании залежей, нарушении герметичности покрышек), при.отборе проб и их хранении и т. д. [c.44]

    Управление, процессом. Контроль за работой колонны для экстрах -ционной перегонки обычно затруднителен, так как температурный градиент, устанаиливающийся в колош[В, не соответствует тому процессу разделения, которое должно производиться. Обычно контроль ведется по материальному балансу на основе ежечасного отбора проб для анализов. В некоторых случаях для производства непрерывного анализа с целью управления процессом в колонне применяют спектральные приборы. [c.118]

    Сероводород в нефтях встречается редко, однако образуется в процессе переработки нефтей и их фракций. Сероводород — сильнейший яд, с характерным запахом тухлых яиц. При малых концентрациях в воздухе он вызывает тошноту, рвоту, головную боль, высокие концентрации сероводорода смертельны. Предельно допустимая концентрация сероводорода в воздухе 10 мг/м . Относительная плотность его по воздуху 1,19, поэтому он накапливается в колодцах, ямах, лотках и др. Во избежание несчастных случаев при работе в кх)лодцах, емкостях, при отборе проб из резервуаров или устра-чедии течей во фланцевых соединениях на установках, перерабатывающих сернистую нефть, необходимо все операции проводить в присутствии дублера-наблюдателя и пользоваться противогазом. [c.29]

    Экспериментальная установка для снятия кинетики исследуемых процессов (рис. 5.13) состоит из трехгорловой колбы 1 емкостью 250 мл, погруженной в термостат 2. Колба снабжена обратным холодильником 5, соединенным с атмосферой через хлоркальциевую трубку 4, и лопастной мешалкой 5. Число оборотов мешалки фиксируется милливольтметром, подключенным через тахогенератор. Для отбора проб трехгорловая колба снабжена пробоотборником 8, который соединен фторопластовой трубкой 9 с разделительным сосудом 10, подключаемым к вакууму. [c.357]

    При проведении процесса сульфирования в трехгорловую колбу загружали 200 г 97% 112804. Термостат выводился на заданный температурный режим (40° С Г 60° С). Число оборотов мешалки доводилось до 70 об/мин. По достижению заданной температуры процесса в колбу загружали 20 г предварительно набухшего в дихлорэтане или тионилхлориде сополимера стирола и ДВБ. Сульфированию подвергался сополимер с содержанием ДВБ в количестве 2,5 и 8 весовых процента. Длительность процесса сульфирования составляла 2—4 ч. Отбор проб осуществлялся через 2—3 мин, затем интервал увеличивался до получаса. [c.357]

    Мы никогда не имеем пробы, которая позволила бы точно узнать строение пласта и его поведение в процессе эксплуатации месторождения. Лучшее, что мы можем сделать, — это построить модель, которая вела бы себя так же, как пласт. При макроскопическом подходе к проблеме такая модель является вполне удовлетворительной при микроскопическом, необходимом для последующих модулей, — надежности получаемых данных присуща неопределенность. Поэтому необходимо получить наиболее вероятные величины, которые можно будет использовать для проектирования других модулей. В прошлом эта проблема пе стояла так остро из-за довольно продолжительного промежутка времени между окончанием бурения скважин и началом обустройства промыслов. Теперь эти сроки становятся все короче. Экономика больших проектов требует, чтобы начальный период освоения месторонедений был сокращен, поэтому времени для отбора проб и анализа продукции пласта остается все меньше и меньше. [c.11]

    Обычно никакого эффективного контроля за выполнением анализа проб не осуществляется, однако необходимо быть убежденным в том, что лицо, проводящее анализ, является компетентным в данном вопросе, так как отбор проб — ключевой момент во всем анализе. От него зависит, какие данные будут полученъ[. Чисто механически отбор проб — несложный процесс. В этом как раз и заключается опасность, так как кажется, что это каждый сумеет сделать . Отбор проб чрезвычайно опасен ловушками , основными из которых являются  [c.287]

    Усложнение определения седловидных и отрицательных тройных азеотропов обусловлено необходимостью отбора в процессе разгонки фракций с более низкими температурами кипения перед взятием проб этих азеотропов. Для уменьшения возникающих при этом трудностей целесообразно. провести несколько последовательньих опытов, определяя вначале примерные температуру кипения и состав азеотропа, а затем уточнить их повторными опытами по разгонке смесей, состав которьк найден в лредыдущи х экспер иментах. [c.108]

    I - исходное сырье 2- подготовленное сырье 3- реакционная смесь после термообработки 4- удаление низкомолекуляртшх фракций 5- слив готового пека 6,7- осадки на фильтрах 8- ПК фракция (<250°С) 9- тяжелый остаток процесса экстракционной очистки 10- отбор проб 11 - перегретый водяной пар Г2 - блоки воздействия на движущийся поток сырья в точках структурных фазовых переходов [c.23]

    Лучшей иллюстрацией могут служить изменения в составе шихты в течение 1960 г., когда начала применяться данная технология. В соответствии с соглашением, достигнутым между экспериментальной станцией в Мариено и заводом, был налажен периодический контроль, осуществляемый примерно один раз в неделю. Основная цель заключалась в проведении качественного отбора проб кокса, получаемого при обоих методах загрузки (сухой и влажной шихтой), и испытании в малом барабане каждой пробы в возможно более воспроизводимых условиях. Ввиду того, что удобнее было производить контроль в дневное время, выбирали произвольно 3 или 4 печи, работающие с применением одного и другого метода загрузки. Пробы кокса каждой из этих печей подвергали двукратным испытаниям в малом барабане. Для этого при погрузке в вагоны порции кокса отбирали вилами, чтобы получить среднюю пробу. Эта проба подвергалась грохочению до крупности 63 мм (в соответствии со стандартом), а затем сушке в сушильной печи с целью избежать ошибок, которые могут быть вызваны различной влажностью. Чтобы испытания проводились при одинаковом числе оборотов барабана, работа последнего управлялась автоматическим прибором. Для ситового анализа кокса был принят грохот, конструкция которого предложена Технической ассоциацией металлургической промышленности, отличающийся большим диапазоном размеров отверстий в ситах и автоматическим управлением времени работы, осуществляемым с помощью минутного механизма. Этот грохот отвечает задачам правильного контроля, так как известно, что различие в режиме просеивания приводит к таким же существенным ошибкам, какие могут быть при использовании сит с неодинаковыми размерами отверстий. Все это должно было свести к минимуму участие человека в процессе опробований и замеров и возможность ошибок. [c.456]

    Пробоотборник гайкой 2 соединяют с точкой Отбора пробы при открытых вентилях 1 и 5. Легким открытием вентиля на технологическом аппарате продувают емкость 4 отбираемым газом, а затем вентиль 5 закрывают. При достижении давления по манометру 3, равного давлению в аппарате, закрывают вентили на аппарате и на пробоотборнике, после чего последний снимают. Пробоотборник на рис. 1.3 применяется, если в процессе отбора газовая проба частично конденсируется при температуре окружающей средьк Показаны два варианта сбора конденсата через металлический змеевик 1 с самостоятельным сборником (а) и портативный стеклянный конденсатор,совмещенный со сборником (б), помещаемый обычно в стакан с водой или с более йиэкотемператур-нымхладоагентом. Сосуды 5 н 6 обычно калибруют для определения объемов конденсата и газа. После окончания отбора пробы перекрывают вентиль на технологическом аппарате и зажимы. Определяют объем жидкой фазы (К к) в сосуде 5 н объем газовой фазы (Кг )1 соответствующий отобранному объему жидкой фазы, т. е. [c.9]

    При отборе парожидкостных проб трудно (а часто и невозможно) расположить точку отбора так, чтобы получить среднюю картину происходящего в аппарате или трубопроводе. Так, в парожидкостном состоянии находятся нефтепродукты на тарелках ректификационных колонн, поток, выходящий из печей, потоки,вскипающие при резком падении давления, жидкие потоки, вдаижущиеся в смеси с неконден-сируемым газом (в адсорбционных процессах). Расположение точки отбора пробы играет в этом случае решающую роль. Так, случай а и б не обеспечивают правильного отбора пробы, а в случае в отбор будет относительно точен (рис. 1.7). Расположение патрубка навстречу потоку обеспечивает отбор пробы, близкой по соотношению паровой и жидкой фаз к действительному в данной точке, которая должна находиться на расстоянии 0,4-0,6 радиуса трубопровода от стенки. При отборе пробы под высоким давлением примен1пот пробоотборник, имеющий мерное стекло для визуального опрвделе- [c.13]

    В основе этих методов лежит проведение процесса ректификации в режиме полного орошения на одной из этапонных смесей и определение n по получаемым концентрациям легколетучего компонента на верху колонны и в кубе. При этом следует отметить пять основных этапов методики выбор эталонной смеси подготовка колонны к опыту проведение самого опыта отбор проб расчет Пт. [c.148]

    Отбор проб из трубопровода. Общие требования. Пробу нефти н нефтепродукта нз трубопровода отбирают стационарным пробоотборником. Схема отбора из трубопровода приведена на рис. 12. Пробу из трубопровода отбирают только в процессе перекачивания при скорости жидкости на входе в оробо-забор-ное устройство, равной линейной средней скорости жидкости в трубопроводе в том же на правлении. Допускается отбирать пробу при скорости жидкости на входе в пробозаб орное устройство равной ие менее половины или с большей, чем в два раза, средней линейной скорости жидкости в трубопроводе. [c.41]

    При отсутствии механических пробоотборников пробы кокса отбирают вручную. Но ручной способ имеет следующие недостатки большая трудоемкость, трудность соблюдения точных интервалов времени взятия пробы н наличие субъективных факторов, влияющих на точность отбора пробы. Достоинство механического отбора проб заключается в обеспечении представительности пробы. Механические пробоотборники отличаются небольшими габаритами, удобством включения их есхему процесса, простотой регулирования и обслуживания. [c.256]


Смотреть страницы где упоминается термин Отбор проб процесс: [c.249]    [c.52]    [c.166]    [c.155]    [c.58]    [c.312]    [c.211]    [c.187]   
Химический анализ (1979) -- [ c.615 , c.618 ]




ПОИСК







© 2025 chem21.info Реклама на сайте