Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дериватизация

    ТАБЛИЦА III.I. Примеры дериватизации [c.158]

    Во-вторых, количественный анализ основывается на предположении, что реакция дериватизации протекает полностью. Если это не так, то различный выход продуктов может вызывать большую ошибку. Также необходимо быть уверенным, что реакция не сопровождается рацемизацией или эпимеризацией. Соединения, содержащие асимметрический атом углерода и способные изменять конфи- [c.59]


    Дериватизацию образца обычно осуществляют следующим образом. Растворяют 1 мг вещества в 1 мл буфера (pH 12, ионная сила 1) и [c.204]

    Газовая хроматография как метод анализа аминокислот имеет следующий недостаток перед разделением необходимо дважды проводить дериватизацию. Как уже говорилось в предыдущих главах, некоторые методы ЖХ разработаны применительно к немодифицированным аминокислотам, тогда как другие предусматривают дериватизацию с целью упрощения обнаружения и увеличения чувствительности. [c.177]

    Все более широкое применение масс-спектрометрия находит при определении полярных, нелетучих и (или) термически нестабильных соединений. В том случае, когда описанные выше методики дериватизации оказываются неприемлемыми, и (или) аналитическая методика не позволяет включить (часто очень сложную) стадию дериватизации, масс-спектрометрический анализ таких веществ можно осуществить только при помощи методов мягкой ионизации (разд. 9.4.2). С точки зрения проблемы выяснения структуры соединений, методы мягкой ионизации имеют тот недостаток, что, хотя молекулярную массу определить достаточно легко, в общем случае не наблюдается значимой фрагментации, позволяющей сделать какие-то выводы о структуре соединений. В этом случае, методы мягкой ионизации следует сочетать с тандемной масс-спектрометрией (разд. 9.4.2). Фрагментацию частиц с четным числом электронов, полученных методами мягкой ионизации, можно провести при помощи диссоциации, вызванной соударениями. [c.302]

    Оба метода позволяют определить менее 0,1% примеси другого энантиомера. Несколько более высокая чувствительность и точность ГХ-метода компенсируются риском частичной рацемизации ввиду более высокой температуры, необходимой для дериватизации [72]. [c.202]

    Применение газовой, хроматографии имеет свои ограничения. Далеко не все вещества можно переводить в газовую фазу без разложения. В особенности это относится к сильно ассоциирующим, термически нестойким соединениям, в том числе ко многим биологически активным и высокомолекулярным веществам. Химическое модифицирование (дериватизация) молекул таких термически нестойких веществ для устранения или ослабления их способности к ассоциации лишь отчасти помогает обойти эти затруднения. Поэтому, начиная с середины 60-х годов, когда были преодолены трудности в разработке проточных детекторов для обнаружения компонентов в жидких растворах, началось бурное развитие жидкостной хроматографии (ЖХ), причем в основном адсорбционной жидкостной хроматографии, т. е. произошло второе рождение собственно хроматографии Цвета. В настоящее [c.9]


    Подготовка пробы к газохроматографическому анализу включает операции, позволяющие повысить чувствительность и улучшить метрологические характеристики определения, а также расширить область применения метода. Сюда входят отбор порции анализируемого материала, при необходимости — ее консервация на заданное время и транспортировка в аналитическую лабораторию, удаление мешающих веществ, выделение и концентрирование определяемых соединений, превращение их в более удобные аналитические формы (получение соответствующи.х производных — дериватизация) и, наконец, введение дозы подготовленного образца в испаритель (дозатор) хроматографа или непосредственно [c.156]

    Метод энантиомерной метки учитывает потери L-аминокислот в процессе обработки и дериватизации, но не учитывает их потери вследствие возможной рацемизации [4]. Степень рацемизации можно определить в отдельном эксперименте со смесью чистых стандартов. Отличительная особенность метода состоит в том, что он позволяет полностью компенсировать потерю некоторых лабильных аминокислот, таких как триптофан, цистеин, треонин и серии, в процессе кислотного гидролиза белков. [c.177]

    С особым вниманием следует относиться к получению химических производных (дериватизации) определяемых соединений, имея в виду воспроизводимое достижение максимальных выходов и исключение образования побочных продуктов при минимальных затратах времени. Выбор конкретной методики химической обработки пробы должен быть основательно продуман и обоснован. [c.160]

    Как указывалось в разд. 3.2, энантиомеры можно разделить в виде диастереомерных производных, получаемых по реакции с оптически активными реагентами. Поскольку диастереомеры обладают различными физическими и химическими свойствами, эти производные можно разделить обычными хроматографическими методами. Часто такие методы достаточно просты в применении, особенно в ГХ, где дериватизация необходима в любом случае. Однако недостатком этих методов являются определенные трудности в интерпретации результатов. [c.58]

    Термин Р.х. применяют в осн. в газовой хроматографии. Аналогичные разновидности жидкостной хроматографии обычно называют спец. терминами, напр, реакционное детектирование -совокупность методов превращения анализируемых соед. после их выхода из колонки с целью улучшения характеристик последующего детектирования, химическая дериватизация -методы получения производных анализируемых соед. с целью улучшения характеристик разделения и детектирования. Иногда ионообменную и лигандообменную (с использованием хелатообразующих сорбентов) хроматографию рассматривают как частный случай реакц. жидкостной хроматографии. [c.216]

    Схема 3.1. Принципиальная схема хиральной дериватизации энантиомеров с целью получения диастереомеров, которые можно разделить хроматографически на нехи-ральных неподвижных фазах. [c.38]

    И. X. применяется для разделения катионов металлов, напр, смесей лантаноидов и актиноидов, 2г и НГ, Мо и W, КЬ и Та последние разделяют на анионитах в виде анионных хлоридных комплексов в р-рах соляной и плавиковой к-т. Щелочные металлы разделяют на катионитах в водных и водно-орг. средах, щел.-зем. и редкоземельные металлы-на катионитах в присут. комплексонов. Большое значение имеет автоматич. анализ смесей прир. аминокислот на тонкодисперсном сульфокатионите.в цитратном буфере при повыш. т-ре. Аминокислоты детектируют фотометрически после их р-ции с нингидрином или флюориметрически после дериватизации фталевым альдегидом. Высокоэффективная И. X. (колонки, упакованные сорбентом с размером зерен 5-10 мкм, давление для прокачивания элюента до 10 Па) смесей нуклеотидов, нуклеозидов, пуриновых и пиримидиновых оснований и их метаболитов в биол. жидкостях (плазма крови, моча, лимфа и др.) используется для диагностики заболеваний. Белки и нуклеиновые к-ты разделяют с помощью И. X. на гидрофильных высокопроницаемых ионитах на основе целлюлозы, декстранов, синтетич. полимеров, широкопористых силикагелей гидрофильность матрицы ионита уменьшает неспецифич. взаимод. биополимера с сорбентом. В препаративных масштабах И. х. используют для вьщеления индивидуальных РЗЭ, алкалоидов, антибиотиков, ферментов, для переработки продуктов ядерных превращений. [c.264]

    Эти соединения слишком полярны, чтобы их можно было разделять методом ГХ без предварительной дериватизации, которая в некоторых случаях необходима и в ЖХ. Предпочтительный метод дериватизации — преврашение в оксазолидоны реакцией с фосгеном [77]. В некоторых случаях используются нециклические карбаматы, получаемые по реакции с изоцианатами. Эти реакции представлены на схеме [c.204]

    В последние годы в хромато-масс-спектрометрии ш poкo применяются кварцевые капиллярные колонки с привитыми силиконовыми неподвижными фазами. Их использование позволяет анализировать крайне труднолетучие и термически нестабильные соединения, например дипептиды (после получения производных по амино- и карбоксильным группам), олигосахариды (также после соответствующей дериватизации), токсичные полихлорированные ароматические углеводороды и т. д. Кроме того, подобные фазы устойчивы к действию больших количеств (до 500 мкл) агрессивных растворителей, в том числе воды, что существенно расширяет возможности хромато-масс-спектрометрии при анализе следов органических соединений. [c.206]


    Для увеличения чувствительности детектора иногда применяют послеколоночную дериватизацию компонентов смеси Для этого с потоком элюента вводят такие реагенты, к-рые, взаимодействуя с разделенными в-вами, образуют производные с более выраженными св-вами, напр сильнее поглощают в УФ или видимой области спектра или обладают большей флуоресцирующей способностью и т д Иногда дериватизацию проводят до хроматографич анализа и разделяют производные, а не исходные в-ва [c.153]

    Еще один способ изменить свойства системы в целом дпя решения аналитической задачи — дериватизация определяемых веществ. Таким образом может быть изменена полярность соедннення, увеличена чувствительность его жгектирования, а отклик может стать более селективным. Например, аминокислоты дериватизуют в гвдролизатах белка реакцией с дансилхлоридом (1-диметиламинонафталин-5-сульфонилхлоридом), при этом получаются флуоресцирующие соединения (рис. 5.3-12). [c.280]

    Электронный захват можно считать высокоселективным методом ионизации, поскольку лишь ограниченное число веществ подвержено эффективному захвату электронов, в частности фторсодержащие соединения. Часто для улучшения чувствительности МС с ионизацией электронным захватом используют химическую дериватизацию, например, с образованием пентафторпроизвод-ных бензола. [c.269]

    В общей случае можно утверждать, что следует предпочесть наиболее легкое решение проблемы — ГХ-МС с квадрупольным масс-спектрометром. Если летучесть или устойчивость аналита недостаточна для ГХ-МС, можно либо пойти по пути химической дериватизации, либо использовать методы мягкой ионизации, если речь идет о сочетании с ЖХ в режиме on-line или off-line. Если определению вещества мешают компоненты, присутствующие в образце, улучшают либо хроматографическое разделение, либо спектральную селективность, проводя измерения с более высоким масс-спектральным разрешением или используя тандемную МС. Очевидно, что спектрометры с высоким разрешением нужно применять, если требуется точное определение масс. [c.286]

    Очевидно, что методика идентификации при помощи ГХ-МС или прямого ввода пробы и ионизации электронным ударом не всегда приводит к успеху. В принципе можно сказать, что ее применение ограничено веществами, имеющими значительную плотность паров (летучесть) и термическую стабильность. В этом отношении прямой ввод пробы имеет более широкий диапазон приложений, чем ГХ-МС. Область применения ГХ-МС может быть расширена за счет дериватизации компонентов, увеличивающей их летучесть, что часто находит применение в традиционном газохроматографическом анализе (см. разд. 5.2). В масс-спектрометрии использование подобных реакций дериватизации преследует две цели. Первая из них заключается в увеличении летучести вещества экранированием полярных групп, т. е. полярные протоны кислот, аминов, спиртов и фенолов заменяются более инертными группами путем, например, этерификации кислотных групп, ацетилирования амихюгрупп или силанизиро-вания. Кроме этого, дериватизацией можно улучшить параметры ионизации. Так, включение пентафторфенильного заместителя обеспечивает более интенсивный отклик в случае масс-спектрометрии отрицательно заряженных ионов при химической ионизации электронным захватом. В рамках этих направлений, многие нелетучие и (или) термически нестабильные вещества, такие, как стероиды, (амино)кислоты, сахара, и широкий спектр лекарственных препаратов, становятся доступными газохроматографическому и ГХ-МС-анализу. Очевидно, что процедура дериватизации влияет на массу исследуемого соединения. В общем случае, сдвиг в область более высоких значений m/z является преимуществом, так как в этой области должно быть меньшее число мешающих компонентов. Однако в случае идентификации неизвестных соединений надо помнить, что дериватизация может привести и к непредвиденным артефактам тогда для определения молекулярных масс рекомендуется использовать методы мягкой ионизации (разд. 9.4.2). [c.301]

    Определение энантиомерного состава, или энантиомерной чистоты, малых количеств веществ возможно только хроматографическими методами. Наиболее достоверные результаты дает непосредственное разделение энантиомеров с помощью хиральной хроматографии без какой-либо хиральной дериватизации, предшествующей разделению (см. разд. 4.3). Поэтому данная глава посвящена главным образом аналитическому применению хроматографических методов, описанных в разд. 6 и 7. [c.173]

    Сочетание мягкой ионизации и МС-МС, обычно как детектирование on-line в варианте жидкостной хроматографии, также часто используют для детектирования метаболитов лекарственных веществ. Это одна из важнейших областей применения масс-спектрометрии, так как на ранних стадиях разработки лекарственных препаратов исследователям доступны только очень малые количества метаболитов, и их идентификация имеет первостепенную важность в фармацевтических исследованиях потенциальных лекарств. Ранее для этой цели использовали сочетание масс-спектрометрии с газовой хроматографией, включающее достаточно сложные методики дериватизации. За несколько по- [c.305]

    В иредколонке осуществляется химическое улавливание соединений определенных классов или дериватизация соединений [c.78]

    Помимо качественной информации об анализируемом соединении масс-сиектрометрия дает возможность получать и количественную. Это достигается двумя путями. Во-первых, можно определить сумму всех сигналов ионного тока и получить зависимость ионного тока от времени. Во-вторых, можно выделить любой ионный ток для выбранного фрагмента и получить дополнительные зависимости. Эти зависимости называют соответственно общим ионным током и профилем тока выбранного иона. Полученные сигналы могут быть обработаны как ГХ-сигналы, имеющие определенные времена удерживания, факторы отклика и интегральные площади. Па рис. 5-7 представлен профиль общего ионного тока для стандартной смеси лекарств (без дериватизации). Приведены также профили ионных токов шести выбранных характеристичных ионов. Так же, как и в ГХ, можно количественно охарактеризовать анализируемое соединение с высокой степенью точности и воспроизводимости. [c.82]

    Поскольку с момента создания ГХ были разработаны разнообразные методы дериватизации, то нет ничего удивительного в том, что многие из этих реакций, но с использованием оптически активных реагентов были применены и для хиральной дериватизации энантиомеров. Ряд подобных методов дериватизации получил распространение и в жидкостной хроматографии. [c.38]

    Вез хиральной дериватизации (иногда с целью повышения селективности и(или) чувствительности используется обычная дериватизация) [c.39]

    Схема 4.2. Пример использования для хиральной дериватизации реагента с оптической чистотой менее 100%. Поскольку энантиомеры нельзя разделить на нехиральной неподвижной фазе, продукты I и IV, а также II и III дают один пик. [c.59]

    В 1981 г. тот же принцип преврашения цианопропилсиликонов в материалы, пригодные для модификации хиральными производными, был использован для введения в структуру последних нескольких новых хиральных лигандов [16—19]. Гидролиз цианогрупп и их восстановление до первичных аминов позволяют проводить модификацию оптически активными кислотами. Одна из наиболее интересных фаз, полученная в ходе таких исследований, содержит ь-валин-(Я)-1-фенилэтиламид, ковалентно связанный с полисилоксаном, и пригодна для разделения широкого круга рацематов, включая О-ТФА-производные углеводов. Реакции, применяемые при дериватизации цианопропилсиликонов по этому методу, показаны на схеме 6.2. [c.92]

    Наиболее вероятно, что фаза (12), которая по своей структуре аналогична диамидным фазам, используемым в ГХ, и фазам Хары, получившим распространение в ЖХ, действует главным образом благодаря образованию водородных связей и стерических эффектов. Однако данные по применению фазы (13) указывают, что в этом случае имеет место также влияние образования комплексов с переносом заряда, поскольку наблюдается разделение соединений с тг-акцепторными заместителями. Интересно, что, как показал Ои, фаза (14), которая содержит оба хиральных центра, применима к более широкому кругу соединений. Она дает особенно хорошее разделение Ы-3,5-динитробензоилпроизводных аминокислот, 3,5-ди-нитроанилидов карбоновых кислот и 3,5-динитрофенилкарбаматов спиртов. Некоторые эфиры и спирты хорошо разделяются непосредственно, без предварительной дериватизации. [c.156]

    Для разделения соединений этого типа был использован целый ряд методов ЖХ, два из которых представляют особенный интерес, поскольку не требуют предварительной дериватизации. Один из этих методов, основанный на образовании комплексов с металлами, применим лишь к ограниченному кругу соединений. В основу другого, более общего, метода положены два различных варианта хиральной ион-парной хроматографии. В одном из них ахиральный сорбент сочетается с хиральным противоионом (разделение диастереомерных ионных пар), в другом — хиральный сорбент сочетается с ахираль-ным противоионом (разделение хиральных ионных пар, см. разд. [c.199]

    В статье [86] описано непосредственное, без предварительной дериватизации, разделение энантиомеров некоторых лекарственных средств основного характера, включая атропины, и средств для местной анестезии на колонках EnantioPa , а также посредством ион-парной хроматографии. [c.208]


Смотреть страницы где упоминается термин Дериватизация: [c.282]    [c.402]    [c.606]    [c.120]    [c.248]    [c.120]    [c.119]    [c.119]    [c.39]    [c.186]    [c.190]    [c.200]    [c.206]    [c.207]   
Смотреть главы в:

Анализ воды -> Дериватизация


Анализ воды (1955) -- [ c.23 , c.131 , c.139 , c.166 , c.187 ]

Молекулярный масс спектральный анализ органических соединений (1983) -- [ c.176 ]




ПОИСК







© 2024 chem21.info Реклама на сайте