Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дисперсность мономеров

    Дисперсность мономеров. Влияние дисперсности исходных мономеров при поликоиденсации в твердой фазе изучалось на примере эфиров полипептидов [11]. Было установлено, что скорость реакции увеличивается при измельчении продукта (рис. 8.5). [c.221]

    Сравнение скоростей полимеризации метилметакрилата в блоке, растворе, эмульсии и суспензии показывает, что наиболее быстрое образование полимера наблюдается при эмульсионной полимеризации. Это, видимо, обусловлено большой дисперсностью мономера и наличием эмульгатора, который снижает вероятность обрыва цепной реакции. [c.332]


    Процесс эмульсионной полимеризации является характерным примером гетерофазного процесса, который в силу малых размеров частиц дисперсной фазы может рассматриваться как процесс физико-химического взаимодействия между отдельными взаимопроникающими континуумами сплошных сред (каплями мономера, частицами полимера, водной фазой). Уравнения сохранения массы такого многофазного многоскоростного континуума можно записать в виде [32—34] [c.147]

    Математическая модель процесса гетерофазной эмульсионной полимеризации [33]. Как было показано выше, математическая модель процесса эмульсионной полимеризации должна учитывать диффузионный транспорт молекул мономера в сплошной и дисперсной фазах. Рассмотрим типичную полимеризационную систему, состоящую из воды, практически нерастворимого в воде мономера, эмульгатора и водорастворимого инициатора. [c.153]

    Параметры, характеризующие процессы диспергирования смеси мономеров в водную фазу, дробления и коалесценции частиц дисперсной фазы, определяются из следующих соотношений [30, 31]  [c.276]

    Соотношение между дисперсионной средой (водой) и дисперсной фазой (мономером) определяется условиями проведения процесса и назначением получаемой суспензии (латекса). На практике это соотношение составляет 1,5—3,0 1. [c.16]

    Размер шариков дисперсной фазы в эмульсиях колеблется в широких пределах от таких, которые можно рассмотреть даже невооруженным глазом, до шариков коллоидной степени дисперсности. Размер шариков дисперсной фазы в эмульсиях в большей части составляет 0,1—10,0 мкм. Поэтому их можно наблюдать в поле обычного оптического микроскопа. Эмульсии весьма распространены в природе и технике. К ним относятся, например, молоко, яичный желток, нефть, в которой всегда содержатся в диспергированном виде вода, млечный сок растений — каучуконосов, охлаждающие эмульсии, которые используются при холодной обработке металлов. В производстве полимеров используется эмульсионный метод полимеризации. Если процесс полимеризации может происходить только при контакте мономера с катализатором, который растворяется в другой жидкости, то создают соответствующую эмульсию. При этом существенно увеличивается поверхность соприкосновения мономера с жидкостью, содержащей катализатор, и во столько же раз увеличивается скорость реакции полимеризации. [c.448]

    Долгое время считалось, что именно процесс мицеллообразования и солюбилизации загрязнений мицеллами ответствен за моющую способность детергента. Однако, как видно из рис. XVn.2, моющая способность возрастает с увеличением концентрации детергента вплоть до ККМ, после чего практически не изменяется это означает, что моющее действие определяется концентрацией мономера ПАВ. Эффективность детергентов определяется не только способностью отрывать частицы жира от поверхности ткани (за счет изменения о), но и их способностью удерживать эти частицы во взвешенном состоянии, предотвращая повторное осаждение. Таким образом, важно учитывать и дефлокулирующую способность детергентов, т. е. их способность стабилизировать дисперсную систему, получающуюся при удалении грязи ( защитное действие детергентов). [c.363]


    Эмульсионная полимеризация — это способ проведения полимеризации мономера обычно в водной среде, приводящий к образованию дисперсии полимера с частицами коллоидной степени дисперсности (размером от долей до нескольких единиц микрометров). Обязательными компонентами рецептуры эмульсионной полимеризации являются мономер (или несколько мономеров), вода, инициатор, чаще всего растворимый в воде, и эмульгатор. Эмульгаторами служат поверхностно-активные вещества (ПАВ), обеспечивающие стабильность как исходной эмульсии мономера в воде, так и образующейся дисперсии полимера. Вместо ПАВ или вместе с ним могут применяться защитные полимерные коллоиды, образующие вязкие водные растворы. [c.23]

    В результате так называемой межфазной полимеризации мономеров на границе дисперсионной среды (чаще всего водной) и дисперсной фазы (масла) возникает твердая оболочка полимера, образующая шарообразную микрокапсулу, ядром которой могут быть растительные, животные, минеральные и синтетические масла. [c.352]

    На той стадии, когда большая часть мономера уже превратилась в частицы, но последние еще не начали агрегировать, можно подсчитать вязкость золя из объемной доли дисперсной фазы. Такая фаза представляет собой кремнеземные частицы с водой, удерживаемой на их поверхности водородной связью. [c.328]

    В воде в виде мелких капель распределен мономер (или мономеры), являющийся дисперсной фазой. Эмульсия представляет собой термодинамически неустойчивую систему, стремящуюся расслоиться. Эмульгаторы оказывают на систему Стабилизирующее действие. [c.210]

    Особенности кинетики эмульсионной полимеризации отдельных мономеров определяются их растворимостью в воде, распределением между фазами системы, степенью дисперсности компонентов. Существенную роль играет растворимость инициатора в воде и мономере. [c.213]

    Соотношение дисперсионной среды (воды) и дисперсной фазы (мономера) определяется условиями процесса и назначением получаемого латекса. При проведении высокотемпературной полимеризации (50 °С), когда требуется получить концентрированный латекс, соотношение фаз составляет- (105-н, -ЬЮО) 100. [c.213]

    Кайти и Кагава [1057] нашли, что коэффициент полимеризации метилметакрилата при эмульсионной полимеризации выше, чем при блочной и суспензионной. Это обусловлено большей дисперсностью мономера и наличием эмульгатора, который, по мнению авторов, снижает вероятность обрыва ценной реакции. [c.386]

    Способность системы сохранять дисперсность во времени при отсутствии внешних астабнлизующих воздействий далеко не исчерпывает требований к устойчивости синтетических латексов. В отличие от латексов — полупродуктов эмульсионных каучуков, которые должны сохранять устойчивость лишь на стадиях полимеризации и отгонки незаполимеризовавшихся мономеров, товарные латексы подвергаются в процессе их получения и переработки ряду дополнительных специфических воздействий механических [8—12], замораживанию-оттаиванию [13—16], испарению влаги с поверхности и в объеме [8, 17, 18], а также в латексы вводят электролиты [9, 19—24], наполнители, неионные эмульгаторы в качестве стабилизаторов [23, 25—28]. 6о многих случаях требуется ограниченная устойчивость к одним и высокая — к другим коагулирующим воздействиям. Например, при проведении процесса агломерации частиц латекс должен обладать лишь ограниченной устойчивостью к агломерирующим воздействиям, препятствующей макрокоагуляции этот же латекс в процессе дальнейшей переработки при получении на его основе пенорезины должен обладать высокой устойчивостью к механическим воздействиям, но ограниченной устойчивостью к действию специфических химических агентов — латекс должен быстро желатинировать. (Иногда желательно даже, чтобы латекс желатинировал при повышенной температуре без введения специальных агентов. Такой процесс положен, например, в основу одного из способов получения пенорезинового подслоя при производстве ковров.) [c.588]

    Учет стохастических особенностей процесса эмульсионной полимеризации. Процесс эмульсионной полимеризации является типичным процессом, для которого характерна двойственная де-терминированно-стохастическая природа [23]. К детерминированным свойствам процесса можно отнести непрерывные процессы химического превращения, а к стохастическим — явление вхождения первичных радикалов из водной фазы в полимер-мономерные частицы (которое имеет большее значение, когда скорость диффузии радикалов из водной фазы в частицы превышает скорость обрыва цепи), а также эффекты взаимодействия (дробления и коалесценции) включений дисперсной фазы между собой. Стохастические свойства системы в приведенных выше феноменологических уравнениях (3.47)—(3.68) отражаются среднестатистическими величинами с , тпр-, Для определения этих величин необходима формулировка соответствующих уравнений БСА, записанных относительно функций распределения латексных частиц по объемам V, числу мономерных звеньев растущего макрорадикала 2 и числу молекул мономера в них для растущих и нерастущих макрорадикалов  [c.159]


    Здесь уравнения (4.62)—(4.66) описывают средние скорости изменения концентраций инициатора, радикалов, мономеров и суммарной степени превращения в частицах дисперсной фазы. Уравнение (4.67) описывает нестационарный перенос тепла от единичного включения к сплошной фазе. Уравнения теплового баланса (4.68)—(4.69) для реактора и рубашки составлены при допущении полного перемепшвания сплошной фазы в реакторе и теплоносителя в рубашке. Уравнение БСА (4.70) характеризует изменение в течение процесса функции распределения частиц дисперсной фазы по массам р (М, 1). В уравнениях (4.62)—(4.70) введены следующие обозначения / ( г) — эффективность инициирования X — суммарная степень превращения мономеров АЯ — теплота полимеризации — эффективная энергия активации полимеризации 2 — коэффициент теплопроводности гранул р . — плотность смеси — теплоемкость смеси — коэффициент теплоотдачи от поверхности гранулы к сплошной среде Оои сво — начальные концентрации мономеров кр (х) — эффективный коэффициент теплопередачи — поверхность теплообмена между реагирующей средой и теплоносителем, Ут — объем теплоносителя в рубашке Гу, и Тт — температура теплоносителя на входе в рубашку и в рубашке соответственно Qт— объемный расход теплоносителя V — объем смеси в реакторе — объем смеси [c.275]

    Fiepa TBopHMbie в воде дивинил или изопрен частично растворяются в мицеллах эмульгатора. Растворимость морюмера колеблется в пределах 0,5—1% в зависимости от типа эмульгатора и его концентрации в воде. В мицеллах эл ульгатора и происходит начальный процесс полимеризации. Образующийся полимер нерастворим в эмульгаторе и выпадает в осадок в виде тонкого порошка. Частицы полимера растворяют некоторое количество. мономера, который полимеризуется в этих частицах. По мере превращения растворенного мономера в полимер последний растворяет все новые порции мономера. Эмульгатор адсорбируется иа поверхности полимера и предотвращает слипание его отдельных частиц, благодаря чему полимер распределяется в воде в виде мелкой дисперсной системы—л а т е к с а. [c.234]

    Показано, что способ получении эмульсии определяет ее дисперсный состав и механизм формирования ПМЧ, а следовательно, и кинетические закономерности процесса полимеризации, при этом скорость реакции, являющейся функцией числа ПМЧ в системе, определяется двумя взаимосвязанными параметрами - скоростью микроэмульгирования мономера и скоростью инициирования полимеризации на стадии формирования ПМЧ. [c.114]

    Однн нз важных показателей дисперсий, характеризующий область применения, в частности нх пригодность для В.к. естеств. сушки,-миним. т-ра пленкообразования (МТП табл. 1). Ннже этой т-ры, лежащей вблизи т-ры стеклования полимера, дисперсия не образует монолитных пленок, а В. к.- покрытий с высокими твердостью, адгезией и износостойкостью. Хотя миним. т-ра, рекомендуемая для нанесения В. к. на пов-сть, составляет 5 °С, для получения красок часто используют дисперсии с более высокой МТП снижение последней достигается введением в состав В.к. низкомол. пластификаторов (напр., дибутилфталата) или модификаторов (синтетич. олигомеров), а также т. наз. коа-лесцирующих добавок-летучих пластификаторов (напр., моноэтиловых эфиров этилен- или диэтиленгликоля), высших спиртов. Осн. достоинство В. к,-отсутствие в них орг. рнрителей. Это обусловливает нетоксичность В.к., взрыво-и пожаробезопасность процессов их приготовления и нанесения, относительно невысокую стоимость. Недостаток нек-рых В. к.- неприятный запах, связанный с присутствием в них остаточного мономера. При длит, хранении В.к., особенно выше 30 °С или ннже 0°С, возможны образование плотных осадков пигментов или коагуляция дисперсной фазы (т.е. необратимая порча В.к.). [c.407]

    ГАЗОФАЗНАЯ ПОЛИМЕРИЗАЦИЯ, способ проведения полимеризации, при к-ром мономер находится в газовой фазе, а продукт р-цни образует твердую дисперсную или жидкую фазу. Скорость Г. п, зависит от скорости диффузии мономера из газовой фазы в зону р-ции и к активным центрам роста цепи в конденсиров. фазе от р-римости и сорбции мономера полимерной фазой от уд. пов-сти частиц катализатора, нанесенных на твердый сорбент при гетерог. полимеризации. В зависимости от способа инициирования рост цепей может происходить в газовой фазе с послед, агрегацией образовавшихся макромолекул нли в частицах полимера. Для мн. систем найдено отрицат. зиачение эффективной энергии активации полимеризации, что обусловлено уменьшением концентрации мономера, адсорбированного полимерными частицами или растворенного в них, с повышением т-ры. Отсутствие р-рителя приводит к снижению роли передачи цепи и росту средней мол. массы полимера. Теплообмен в Г. п. определяется теплопередачей от твердых частиц полимера к газу и зависит от отношения пов-сти частиц к их объему. [c.473]

    При использовании дисперсных наполнителей и рубленого волокна осн. способ произ-ва Н.п.-мех. смешение наполнителя с расплавом илн р-ром полимера, форполи-мера, олигомера или мономера. Для этой цели используют смесители разл. конструкции и вальцы. Непрерывные волокнистые заготовки пропитывают полимерным связующим. Подробнее см. в ст. Полимерных материалов переработка. Для улучшения пропитки волокнистых наполнителей связующим, повышения степени диспергирования частиц наполнителя в матрице и увеличения прочности адгезионного контакта на границе раздела фаз наполнитель-матрица используют разл. методы модификации пов-сти наполнителей, а также метод полимеризагрли на наполнителях. Газонаполненные материалы получают вспениванием с помощью спец. агентов (порообразователей) или мех. вспениванием жидких композиций, напр, латексов. Пенистая структура полимерного материала фиксируется охлаждением композиции ниже т-ры стеклования полимера, отверждением или вулканизацией (см. подробнее в ст. Пенопласты, Пенопласты интегральные. Пористая резина). Жидкие наполнители механически эмульгируют в связующем, послед, превращение к-рого в матрицу Н.п. происходит без разрушения первонач. структуры эмульсии. [c.168]

    Полуфабрикаты П.м. (или компоненты), предназначенные для формования, м.б. в виде жидкостей (компаунды на основе мономеров и олигомеров, р-ры и дисперсии полимеров и олигомеров), паст (резиновые смеси, премиксы на основе полюфирных и эпоксидных связующих), порошков (наполненные и ненаполненные полимеры, твердые смолы и олигомеры), гранул (ненаполненные полимеры, смолы, олигомеры или полимеры, наполненные дисперсными частицами или армированные короткими волокнами), пленок, листов, плит, блоков (пластмассы и резиновые смеси), рыхловолокнистых композиций (спутанноволокнистые материалы, пропитанные связующим), препрегов на основе непрерывных волокнистых наполнителей (нити, жгуты, ленты, ткани, бумага, маты, пропитанные связующим, шпон). По технол. возможностям ненаполненные, наполненные дисперсными частицами или армированные волокнами П.м. идентичны и перерабатываются в изделия одинаковыми методами. [c.6]

    Равновесие устанавливается очень медленно, если только морфный кремнезем не является настолько тонко дисперсным ли микропористым, чтобы обеспечить поверхность в сотни или ысячи квадратных метров на один литр воды. Штобер [144] оказал, что Si(0H)4 адсорбируется на поверхности аморфного ремнезема, замедляя его растворение, как уже упоминалось ля случая кварца. По-видимому, поверхность кварцевого стела состоит из групп SiOH. В таком случае, если мономер [c.63]


Смотреть страницы где упоминается термин Дисперсность мономеров: [c.167]    [c.144]    [c.148]    [c.273]    [c.273]    [c.274]    [c.275]    [c.277]    [c.75]    [c.607]    [c.46]    [c.330]    [c.83]    [c.124]    [c.297]    [c.462]    [c.140]    [c.19]    [c.638]    [c.424]    [c.489]    [c.479]    [c.416]   
Поликонден (1966) -- [ c.259 ]




ПОИСК







© 2025 chem21.info Реклама на сайте