Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация скорость инициирования

    При действии ионизирующего излучения на мономер в нем могут образовываться свободные радикалы, сольватированные электроны и ионы, которые могут служить в качестве активных центров. К преимуществам радиационной полимеризации относятся возможность полимеризации любых мономеров, высокая степень чистоты продукта, независимость скорости инициирования от температуры, простота управления процессом, например изменением мощности дозы. В отличие от фотополимеризации отсутствует зависимость от оптических свойств среды. [c.197]


    Выше было показано, что изучение стационарных скоростей реакций полимеризации дает некоторую суммарную константу скорости, в которую входят константы скорости реакций инициирования, продолжения и обрыва цепи [см. уравнения (XVI.10.4) и (XVI.10.5)]. Если скорость инициирования известна, можно получить значение для отношения А р//с /2. Но, конечно, важно определить истинные значения средней константы скорости продолжения цепи кр и средней константы скорости обрыва цепи к(. [c.518]

    Кинетика радикальной полимеризации. Скорость инициирования в присутствии распадающихся при нагревании инициаторов в условиях, при которых распад происходит по неценному механизму, можно выразить уравнением [c.12]

    В стационарных условиях протекания процесса полимеризации скорость инициирования равна скорости обрыва (уравнение стационарности)  [c.168]

    При эмульсионной полимеризации скорость инициирования влияет не только на скорость полимеризации и молекулярную массу полимеров, но также и на дисперсность, и устойчивость латексов. Следует помнить, что при высоких скоростях инициирования увеличивается скорость генерирования латексных частиц, что может привести к необходимости дополнительного введения эмульгатора по ходу процесса. [c.45]

    В простейшем случае инициированной полимеризации скорость инициирования пропорциональна скорости образования радикалов из инициатора и может быть описана уравнением [c.263]

    При всех преимуществах описанных методов всем им присущ один принципиально важный недостаток с их помощью измеряют общую или валовую скорость полимеризации, в то время как важно знать индивидуальные константы всех стадий процесса полимеризации — скорости инициирования, роста и обрыва цепи (1У-17). [c.224]

    Много лет назад Флори [20] рассмотрел наиболее простую кинетическую схему, приводящую к образованию живых цепей. Допустим, что в момент времени = О осуществляется однократное импульсное инициирование с образованием Щ моль л активных молекул и что в течение всего последующего процесса полимеризации скорость инициирования равна нулю. Последовательность стадий роста описывается дифференциальными уравнениями [c.377]

    Скорость инициирования полимеризации определяется не только скоростью распада инициатора, но и эффективностью инициирования. Под эффективностью инициирования / понимают отношение числа радикалов, инициирующих полимеризацию, к общему числу всех образующихся вследствие распада инициатора радикалов. Если распад молекулы инициатора приводит к образованию двух радикалов, способных инициировать полимеризацию, скорость инициирования выражается зависимостью [c.36]


    Применимость уравнения (45) для многих систем при полимеризации в растворе и в массе при малых степенях превращения не вызывала сомнения [173, 174]. Однако для полимеризации в вязких средах уравнение (45) не выполняется. По мере полимеризации скорость инициирования и величина / в уравнении (45) становятся переменными в связи с диффузионным механизмом реакции инициирования. [c.70]

    В табл. 2 показано влияние природы инициатора на увеличение скорости инициирования полимеризации в эмульсии по сравне нию с полимеризацией в массе. Скорость инициирования полимеризации вычислялась по уравнениям гомогенной кинетики. [c.153]

    Скорость инициирования процесса полимеризации стирола и метилметакрилата в присутствии различных инициаторов  [c.104]

    Скорость инициирования. При сополимеризации, в отличие от полимеризации, скорость инициирования определяется не только природой и концентрацией инициатора, но часто и составом мономерной смеси. В случае азосоединений, например азобисизобутиронитрила, обычно принимается, что скорость инициирования или постоянна, или линейно зависит от состава мономерной смеси. Известно, что константа скорости распада азобисизобутиронитрила зависит от природы растворителя. В случае смешанных растворителей, к которым можно отнести смесь мономеров, константа скорости распада азобисизобутиронитрила может быть рассчитана по формуле  [c.303]

    Ответ. Пероксид бензоила очень мало растворим в воде. Поэтому скорость инициирования достигает заметной величины лишь после того, как концентрация частиц инициатора в дисперсии окажется достаточно большой [см. уравнение (5.3)1. Динитрил азодиизомасляной кислоты лучше растворяется в воде, в связи с этим индукционный период процесса полимеризации, который определяет общую продолжительность процесса, в этом случае будет меньше [c.220]

    Важная роль трех основных стадий реакции (инициирование, развитие и обрыв) как факторов, определяющих скорость реакции, рассматривается ниже. Назначение стадии инициирования заключается в образовании активных центров, каждый из которых возбуждает периодически повторяющиеся циклы реакции. В основном общая скорость окисления является функцией числа активных центров, образующихся в единицу времени (скорость инициирования Г ) из числа повторений каждого цикла. Последний фактор представляет собой кинетическую длину цепи Ь). Точно так же, общая скорость окисления определяется произведением скорости полимеризации на длину цени [c.288]

    В настоящее время почти отсутствуют сведения о сравнении скоростей полимеризации в массе и эмульсии, полученные в строго сопоставимых условиях. Имеются лишь отдельные данные, свидетельствующие о более низкой энергии активации реакций полимеризации и инициирования в эмульсии [46—48], обусловленные влиянием ПАВ на коллоидную структуру систем (табл. 1). [c.153]

    Из приведенных данных видно, что природа инициатора оказывает существенное влияние на скорость полимеризации в эмульсии. Наибольшие изменения скорости инициирования наблюдаются в тех случаях, когда инициатор полимеризации может концентрироваться в поверхностных слоях. Можно полагать, что Таблица 1 [c.153]

    Микроструктура полиизопренов практически не зависит от природы алкила в литийорганическом соединении, но последняя в значительной степени определяет кинетические параметры полимеризации. Скорость реакций инициирования в углеводородных растворителях уменьшается в ряду  [c.210]

    Полимеризация бутадиена или изопрена на металлическом литии в неполярном растворителе приводит к образованию полимера, содержащего до 95% 1,4-звеньев. Однако получить полимеры невысокой молекулярной массы этим способом не удается даже при большом избытке металла из-за низкой скорости инициирования. [c.415]

    Так как при полимеризации на металлическом литии в неполярной среде скорость инициирования чрезвычайно мала, а скорость реакции обмена достаточно велика, в системе содержится очень мало свободных литийорганических соединений и в области низких молекулярных масс степень полимеризации Р определяется формулой  [c.415]

    Поскольку процессы свободно-радикальной полимеризации проводятся либо в жидкой фазе, либо в газовой фазе под давлением, то в этих реакциях преобладающим является квадратичный обрыв цепей. На это однозначно указывает то обстоятельство, что скорость инициированной свободно-радикальной полимеризации всегда пропорциональна корню квадратному из концентрации инициатора. [c.360]

    Полимеризация является сложным процессом и часто не может быть описана одним стехиометрическим уравнением, так как в ряде случаев обрыв цепей приводит к появлению некоторых побочных продуктов. Однако при достаточно большой длине кинетической цепи полимеризацию можно с достаточным приближением описать одним стехиометрическим уравнением. Скорость цепной реакции V равна произведению скорости инициирования цепи V,- и длины кинетической цепи V  [c.223]


    Кинетика радиационной полимеризации мало отличается от кинетики фотополимеризации. Скорость реакции пропорциональна корню квадратному из интенсивности облучения (при интенсивности не более 100 рентген/мин.). Молекулярный вес образующегося полимера возрастает с повышением температуры реакционной среды, скорость инициирования не зависит от температуры реакции. [c.97]

    Если в систему, в которой может идти цепная реакция, добавить достаточное количество ингибитора, то цепная реакция может оказаться практически полностью подавленной и не будет идти до тех пор, пока ингибитор почти полностью ие израсходуется. После этого цепная реакция сразу начинается со значительной скоростью. Поэтому цепные реакции, проводимые в присутствии ингибитора, характеризуются резко выраженным периодом индукции, В качестве иллюстрации на рис. 92 приведены кинетические кривые полимеризации стирола, инициированной азоизобутиронитрилом в присутствии различных концентраций ингибитора. [c.315]

    При изучении закономерностей радиационной полимеризации гексина-1, октина-1 и циклогексилацетилена установлено, что для всех мономеров характерны пропорциональность скорости полимеризации скорости инициирования в 1-й степени, чрезвычайная малость эффективной энергии активации и отсутствие ингибирующего действия Ог. Все эти особенности могут быть поняты, если исходить из предположения о сильной деградаци-онной передаче цепи через мономер. Авторами сделан вывод об общности этих закономерностей для полимеризации ацетиленовых производных вообще [c.83]

    При фотосенсибилизироваппой полимеризации скорость инициирования и полимеризации можно характеризовать уравнениями (3.49)—(3.51), подразумевая под [I] концентрацию сенсибилизатора. Однако при низких концентрациях мономера или низких квантовых выходах в таком процессе может зависеть от [М], и в этом случае для зависимости i p от [М] уравнения (3.50) и (3.51) неприменимы. [c.172]

    В случае полимеризации, инициированной алкилхлоридами (рис. 39), молекулярный вес нолзгченного полимера практически постоянен в ходе превращения, скорость которого подчиняется уравнению первого порядка. Отмеченное обстоятельство свидетельствует о том, что на ранних стадиях полимеризации скорость инициирования равна скорости обрыва и к полимеризации можно применить кинетическую обработку стационарного состояния. С другой стороны, скорость полимеризации и молекулярный вес полимера зависят от типа использованного инициатора. Поскольку, однако, структура развивающего цепь звена от последнего не зависит, отмеченные различия могут быть целиком приписаны различиям в константах скоростей инициирования. [c.134]

    В отличие от термической полимеризации скорости инициированной полимеризации легко воспроизводятся. Скорость полимеризации в массе при инициировании перекисью бензоила вы[)ажается следующей зависимостью [6]  [c.227]

    Процесс обрыва цепей влияние вязкости и ингибиторов. Кинетика полимеризации, особенно простая зависимость скорости полимеризации от корня квадратного скорости инициирования цепей, указывает на то, что радикалы погибают в результате бимолекулярного взаимодействия между двумя радикалами. Однако вопрос о том, включает ли это взаимодействие реакцию соединения или диснропорционирования [ср. уравнение 6], остается нерешенным, хотя большинство исследователей при рассмотрении кинетики предполагает реакцию соединения радикалов. Вероятно, имеют место оба процесса, причем относительные скорости их зависят от природы мономера и температуры. [c.128]

    Ингибиторы, очевидно, превращают реакционноспособные радикалы, участвующие в развитии цепи полимеризации, в нереакционноспособные, но способные к быстрому присоединению но двойным связям. Кинетика процесса ингибитирования довольно подробно изучена. Обычно полимери-зующиеся системы, содержащие ингибиторы, имеют индукционный период (в течение которого полимеризация или совсем но идет, или же идет лншь в незначительной стенени, а ингибитор расходуется), после которого начинается реакция болое или меиее нормальной полимеризации [13, 108]. Если определить длину такого периода индукции при условиях, когда известна скорость инициирования (зарождения) цепи, то можно определить число кинетических цепей, обрываемых каждой молекулой ингибитора. И, наоборот, определяя периоды индукции в ирисутствии определенных количеств ингибиторов с известными свойствами, можно определить скорость зарождения цепей. Этот метод наряду с методом вращающегося сектора имеет большое значение для определения отдельных констант скоростей. [c.129]

    На основании этой картины можно сделать ряд выводов. Во-первых, раз эмульсионная полимеризация идет (и все мыло адсорбировано на частицах полимера, так что нет мицелл, способных создать новые центры), то скорости полимеризации будут зависеть только от числа частиц, а не от скорости инициирования цеии, размера частиц или концентрации ммла. Такая кинетика процесса была показана на примере стирола [113, 134], бутадиена и изопрена в присутствии некоторых, но не всех инициаторов систем [113]. Далее, так как обычно применяется концентрация частиц 101 /л (что эквивалентно концентрации радикалов приблизительно 10 моля ио сравнению с обычно применяемой при полимеризации в массе мономера концентрацией 10 ), то становится очевидным объяснение высоких скоростей, возможных при эмульсионной полимеризации. Затем, поскольку длина кинетической цепи будет определяться скоростью, с которой новые радикалы проникают в отдельную частицу, то не наблюдается обычное обратное отношение между скоростью и р (в отсутствии переноса цепей) и, несмотря на очень высокую скорость полимеризации, можно получать полимеры очень высокого молекулярного веса. Поэтому особенно важно применение регуляторов для эмульсионных систем  [c.132]

    Наибольшей специфичностью в отношении образования 1,4-звеньев (и с-1,4-звеньев) обладает литий и его органические производные. Б углеводородных средах связь углерод — литий является в значительной степени ковалентной. Электронодефицит-ность лития, с одной стороны, открывает возможность образования координационных комплексов с молекулами, имеющими повышенную электронную плотность (в том числе, с молекулами бутадиена), а с другой стороны, приводит к тому, что литийорганические соединения в растворе сильно ассоциированы. Экспериментально установлено, что при полимеризации диенов скорость инициирования пропорциональна концентрации литийалкила в степени а скорость роста цепи — в степени Это [c.179]

    В качестве примера на рис. 77 приведена в логарифмических координатах зависимость скорости полимеризации метилакрила-та от концентрации инициатора азоизобутиронитрила. Зависимость изображается прямой линией с наклоном 0,51. Это означает, что ско- 1дш рость реакции пропорциональна корню квадратному из концентрации инициатора, а следовательно, и корню квадратному из скорости инициирования, поскольку инициирование представляет собой мономолекулярный распад азоизобутиронитрила. [c.285]

    Как и в случае других цепных неразветвленных реакций, скорость инициирования процесса полимеризации может быть определена методом ингибиторов (см. стр. 313), константа скорости квадратичного обрыва цепей—методом прерывистого освещения (методом вращающегося сектора, см.стр. 299), а константа скорости роста цепи может быть вычислена по формуле (IX. 11) из значения скорости полимеризации (скорости расходования мономера), если известны скорость инициирования дП] и константа сгсорости квадратичного обрыва цепей. [c.360]

    Значительно более сложным является вопрос о распределения по молекулярным весам. Ниже этот вопрос будет рассмотрен для начальной стадии полимеризации, когда скорость инициированил н концентрацию мономера, а следовательно, и стационарную концентрацию свободных радикалов можно считать постоянными величинами. Для просто-1 ы рассматривается случай, когда реакцией передачи цепи можно пренебречь. При рассмотрении предполагается, что константа скорости присоединения мономера ко всем свободным радикалам, в том числе и непосредственно образовавшимся из инициатора, одинакова и равна Константы скорости рекомбинации будут предполагаться равными кз для случая рекомбинации любых одинаковых свободных радикалов. Для рекомбинации разных свободных радикалов константа скорости рекомбинации в этом случае [c.363]

    Наоборот, элсктрофильпые (электроноакцепторные) группы, например нитро- или нитрильная группа, будут снижать электронную плотность, особенно если эти группы находятся в параположении. Устойчивость перекисного соединения при этом во -растает, следовательно, снижается скорость инициирования. Экспериментально установлено, что полимеризация в присутствии п,/г -динитроперекиси бензоила происходит в шесть раз медленнее, чем в присутствии незамещенной перекиси беи-зоила. [c.101]


Смотреть страницы где упоминается термин Полимеризация скорость инициирования: [c.102]    [c.45]    [c.321]    [c.521]    [c.119]    [c.122]    [c.154]    [c.195]    [c.363]    [c.94]    [c.98]    [c.263]    [c.346]   
Быстрые реакции в растворах (1966) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Зависимость общей скорости полимеризации от скорости инициирования

Инициирование

Инициирование полимеризации

Инициирование полимеризации влияние на скорость концентрации инициатора

Методы изучения радикальной полимеризации Скорость инициирования

Определение скорости инициирования путем измерения степени полимеризации

Полимеризация скорость инициирования, влияние

Селена изотопный обмен скорости инициирования полимеризаци



© 2025 chem21.info Реклама на сайте