Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вагнер величина

    Предельная диэлектрическая проницаемость 6 на низких частотах. Экспериментальные значения 8 показаны на рис. .51. Согласно теории Вагнера, величина диэлектрической дисперсии, т. е. разница между 8 и 8 , или между кривыми 2 ж 4, является очень малой величиной как при низких, так и при высоких концентрациях, хотя при средних концентрациях эти значения довольно велики. Следовательно, большую диэлек- [c.380]


    Оценка величины диэлектрической дисперсии, обусловленной поляризацией поверхности раздела. Для эмульсий неполярного масла в воде бр является величиной бесконечно малой по сравнению с е ,. Уравнение ( .184) и ( .186) из теории Вагнера в данном случае упростятся [c.347]

    На рис, V,52 дан график частотной зависимости е и х для суспензий двух образцов А и В первый содержит 0,012 М раствор КС1, второй — 0,13 М раствор КС1. На рис,У,53 и V.54 приведены зависимости этих величин в комплексной плоскости для образца А. Как видно, диэлектрическая дисперсия в этих образцах много больше величины, предсказываемой теорией Вагнера для структуры, не имеющей оболочек. Таки.м образом, эту диэлектрическую дисперсию можно рассматривать как эквивалентную описанной выше (см. стр. 351) и обозначенной Тр. Другими словами, результаты приблизительно можно выразить уравнениями- [c.382]

    При дальнейшем анализе механохимических явлений будет рассматриваться преимущественно влияние механических воздействий на электрохимические реакции, поскольку тем самым решаются и другие задачи с одной стороны, обсуждаемые кинетические уравнения электрохимических реакций преобразуются для описания химических реакций (т. е. протекающих без переноса заряда) путем простой замены величины электрохимического сродства величиной химического сродства, а с другой стороны, например, химическая коррозия при высокотемпературном окислении металлов по теории Вагнера рассматривается как электрохимическая реакция на модели гальванического элемента. [c.12]

    Было установлено, что при сопоставимых толщинах поверхностных слоев на поверхностях высокой и низкой поверхностной энергии величина смещения обоих максимумов одинакова. Аналогичную картину мы наблюдали при исследовании импульсным методом ЯМР температурной зависимости времени спин-решеточной релаксации протонов в поверхностных слоях. Это служит доказательством того, что наблюдаемые при исследовании диэлектрической релаксации эффекты не являются следствием эффекта неоднородности среды Максвелла—Вагнера, характерного для объектов с проводящими и непроводящими областями [223]. [c.157]

    Некоторые авторы указывают, что при применении достаточно разбавленных растворов (Н= 0 —10" ) и отборе большого числа фракций в повторном фракционировании необходимости нет. Так, например, Вагнер [23], применив метод дробного осаждения поливинил ацетата из низкоконцентрированных растворов, выделил 16 фракций, 10 из которых были повторно разделены на 20 фракций. Оказалось, что отношение Ма>1Мп после вторичного фракционирования имеет ту же величину, что и после первого фракционирования. [c.29]


    Для определения поверхности электрода путем емкостных измерений наиболее часто используется измерение поляризационной емкости и мостовые методы. Возможности первого метода изучены Боуденом и Райдилом [72], Вагнером [73] и многими другими. Величину поляризационной емкости электрода можно оценить по зависимости потенциала от времени при резком увеличении или уменьшении тока в цепи, а площадь электрода находят по уравнению [c.386]

    Имеются также указания о равновесной ионизации в пламенах. Так, например, Иост и Вагнер [813] нашли, что в холодных пламенах эфира с кислородом при температуре около 400°К концентрация ионов отвечает менее чем одному иону на 10 реагирующих молекул эфира, составляя величину, не превышающую 2-10 ионов в 1 см . Отсюда они заключают, что ионизация в данном случае имеет чисто термическую (равновесную) природу. Сильная ионизация, наблюдающаяся в некоторых горячих пламенах, по мнению этих авторов, обусловлена испусканием электронов частичками сажи. [c.577]

    Допущение о параболической зависимости от числа атомов / компонента замещения в первой координационной сфере атома С является центральным в модели, развитой Вагнером [42]. Ее вывод математически прост, но менее обоснован теоретически, чем более строгие статистические модели. Результирующее уравнение, описывающее активность компонента С в тройной 1 - 2 - С системе, включает один подгоночный параметр (в отличие от изложенной выше модели, в которой таких параметров в результирующем уравнении нет). Подбирая подходящую величину этого параметра, достигают хорошее согласие с экспериментальными данными. Авторы работ [43, 44], используя метод Вагнера, модифицировали его, введя два подгоночных параметра. Не удивительно, что это дало лучшее согласие с экспериментом. В [45] также сохранено допущение о параболической зависимости, но в расчетах учитывали взаимодействия с атомами во второй координационной сфере. Их модель, как и модель Вагнера, содержит один подгоночный параметр. [c.453]

    Наряду со средней длиной цепи важной характеристикой реакции является средний расход адсорбированных атомов водорода на одну молекулу продукта. Следуя Вагнеру и Хауффе [1], которые ввели в рассмотрение эту величину, мы будем ее обозначать V. Если реакция протекает путем последовательного присоединения атомов водорода, т. е. вместо стадии (4) осуществляется стадия  [c.393]

    Предельная диэлектрическая проницаемость 8 на низких часто-Рис. У.49. Частотная зависимость ах. Экспериментальные значения диэлектрической проницаемости 6 показаны на рис. .51. Соглас-(а) и удельной электропроводно- но теории Вагнера, величина ди-сти (б) эмульсии нитробензол— электрической дисперсии, т. е. развода (Ханаи, Коицуми и Гото,  [c.380]

    Широко известно то обстоятельство, что устойчивость при пиролизе углеводородов так называемой фракции тяжелой нафты характеризуется значением, средним по величине между значениями для бензина и керосина. Это обстоятельство заметили еще ]Иур и Эглоф (Мооге and Egloff [98]), которые установили, что превращение за один проход через печь с температурой 700° С у фракции 200—250° С пенсильванской нефти меньше, чем у других изучавшихся фракций. Вагнер [99]. также сообщает, что тяжелый рисайкл, полученный крекингом при температуре 538° С, отличается особой устойчивостью при дальнейшем крекировании. [c.309]

    Если поверхностное соединение металла является полупроводником р-типа с недостатком металла, например uaO, NiO, FeO, СоО и др., то при окислении таких металлов должна, по Вагнеру, наблюдаться определенная зависимость от величины давления кислорода (см. рис. 90). В идеальном случае к реакции окисления приложим закон действующих масс. В случае окисления никеля по реакции (54) [c.131]

    Выходят монографии Шоттки, Улиха и Вагнера Льюиса и Рендала курс химической термодинамики Улиха содержащие названные таблицы. В работах де Донде вводится концепция сродства как величины, характеризующей необратимость реакции. Эти представления изложены в систематической форме в книгах Пригожина и Дефэя  [c.19]

    Вагнер и Меервейн высказали мнение, что одной из стадий изомеризации алкильной группы должна быть стадия образования карбониевого иона, который может образоваться при взаимодействии алкилирующего агента с катализатором. Совершенно ясно, что как внутримолекулярные гидридные переносы, так и скелетные перегруппировки зависят от величины энергетических барьеров, определяющих тенденцию к изомеризации до получения стабильных промежуточных карбокатионов. Например, алкилирование бензола трет-бутилхлоридом или изобутилхлоридом при контакте с А1С1з дает лишь грет-бутил-бензол (что объясняется большим различием в стабильности первичного и третичного карбокатионов), тогда как алкилирование трет-пентилхлоридом дает смесь продуктов, что можно [c.100]


    Числовая оценка этих соотношений подтверждает их приблизительное равенство. Теории Ханаи и Вагнера предсказывают, что величина диэлектрической дисперсии слишком мала, и не может быть обнаружена в эмульсиях М/В. [c.347]

    В табл. V.4 приведено сравнение величин диэлектрической дисперсии в — е, полученных из уравнений (V.190) и (V.191) теории Вагнера и уравнений (V.229) и (V.233) теорпи Ханаи. Так как реальная часть величины диэлектрической проницаемости не была измерена, значения диэлектрической дисперсии ej — получены интегрированием площадей, описываемых кривыми на рис. V.35, с помощью соотношения  [c.372]

    Чтобы понизить диэлектрическое поглощение самой дисперсной фазы, Драйден п Мекинс в дальнейших экспериментах использовали в качестве непрерывной фазы смесь нефтяного желе с 3—10% раствором шерстяного воска. График зависимости е" — lg / для этих систем, в противоположность рис. У.35, имеет симметричную форму относительно частоты максимальных потерь, а площади, описываемые кривыми е", т. е. — ef , больше полученных расчетным путем из теорпи Вагнера. Например, при содержании воды 10 и 20% площадь, полученная по экспериментальным значениям, на 25 и 70%, соответственно, больше площади, вычисленной по теории Вагнера. При использовании теории Ханаи эти величины становятся еще больше. Такое расхождение объяснено широким распределением частиц воды по размерам (0,5—5,5 мкм) в этих системах. Кроме того, значения е, — могут быть больше вследствие эффекта агломерации, как в экспериментах Ханаи (см. стр. 375), когда эти значения уменьшались с ростом сдвигового потока. [c.373]

    Дальнейшее развитие этих представлений связано с работами Вагнера и Трауда, которые предложили рассматривать суммарный процесс растворения чистого металла как результат протекания двух или нескольких независимых электрохимических реакций, связанных между собой величиной скачка потенциала и распределенных на поверхности со статистической беспорядочностью. [c.412]

    Одной из проблем исследования диэлектрических свойств сорбированной воды является определение ее диэлектрической проницаемости. Для оценки величины диэлектрической проницаемости сорбированной воды обычно применяются формулы Бруггемана, Лоренца (Оделев-ского), Вагнера и др. Однако все эти соотношения применимы для смесей, не содержащих в качестве одного из компонентов сильнополярное вещество, каким является вода. Более применима для этих целей теория Онзагера — Кирквуда — Фрелнха, предложенная для полярных диэлектриков. При малой влажности у частиц материала нет двойного электрического слоя противоионов, поэтому можно не учитывать низкочастотную диэлектрическую дисперсию [49]. Однако определение диэлектрической проницаемости осложняется тем, что сорбированная вода, как отмечалось, находится внутри пор в виде не связанных между собой микровключений — ассоциатов. В связи с этим нельзя определять макроскопические (массовые) характеристики сорбированной воды (в частности, ее диэлектрическую проницаемость). Строго говоря, необходимо искать не диэлектрическую проницаемость сорбированной воды, а молекулярные характеристики (дипольный момент сорбированных молекул, энергию активации поляризации) и определять взаимное положение и ориентацию соседних молекул воды внутри ассоциатов. [c.74]

    F3 I. Спектр комбинационного рассеяния жидкого трифторхлорметана исследовали Каховец и Вагнер [2318], Дельволль и Франсуа [1303, 1305]. Определенные этими авторами значения основных частот молекулы F3 I близки к значениям этих величин, полученным позднее при исследовании колебательных спектров газа. [c.505]

    Генератор, питающий мост, должен давать напряжение правильной синусоидальной формы на частотах 0,5-10 кГц. Амплитуда выходного напряжения должна меняться от нескольких вольт до малых величин. Индикатор в общем случае состоит из усилителя с большим регулируемым коэффициентом усиления и осциллографа. На горизонтальные пластины осциллографа подается сигнал с моста, а на вертикальные - с генератора. При отсутствии баланса на экране осциллографа появляется эллипс, так называемая "фигура" Лиссажу. В момент равновесия эллипс превращается в горизонтальную линию. Индикатор и генератор колебаний следует при помощи трансформаторов изолировать от моста, иначе заземление Вагнера не будет действовать удовлетворительно. Недорогой операционный усилитель для кондуктометрического моста описан Де Сиено [109]. [c.47]

    Что касается вероятностей тех или других путей реакзз ии, то процессы, идущие с нарушением правила Вагнера, т. е. с изменением спина, часто считаются относительно маловероятными. Однако справедливость такого заключения, как сказано выше, зависит от величины магнитного взаимодействия. [c.108]

    При повторном фракционировании выделенной фракции дробным осаждением можно получить две новые фракции с более узкими кривыми ММР. Однако при данной начальной концентрации раствора оптимальное количество повторных фракционирований быстро приближается к своему предельному значению. Так, например, Вагнер [6], применив метод дробного осаждения по-ливинилацетата из разбавленных растворов, показал, что отношение MJMn после вторичного фракционирования имеет ту же величину, что и после первого фракционирования. Было также показано [7], что, если при фракционировании масса фракции [c.209]

    Еще в 1928 г. Гиле и его сотрудники [42] провели ряд работ, в которых было ясно установлено влияние пластических деформаций на проводимость галогенидов щелочных металлов. Создание напряжений выше предела текучести тотчас вызывало увеличение проводимости, за которым следовало медленное уменьшение ее до первоначальной величины. Смекал тогда уже оценил важность этих работ, но в тридцатых годах в связи с повышенным интересом к теории дефектов, и в частности дефектов Шоттки — Вагнера, опытам Гиле не было придано должного значения. В настоящее время эти ранние эксперименты можно объяснить, пользуясь теорией дислокации. Установлено, что в процессе пластической деформации вакансии порождаются дислокациями, вследствие чего проводимость возрастает медленное уменьшение проводимости вызвано агрегацией излишних вакансий, которые, в конце концов, осаждаются на дислокациях. [c.63]

    Сопротивление в основном обусловлено u l исходя из этого допущения, Вагнер путем подстановки величины удельного сопротивления u l вместо R вычислил константу скорости реакции и получил значение, хорошо согласующееся с опытным. [c.77]


Смотреть страницы где упоминается термин Вагнер величина: [c.380]    [c.424]    [c.183]    [c.56]    [c.249]    [c.42]    [c.587]    [c.392]    [c.429]    [c.429]    [c.214]    [c.141]    [c.736]    [c.114]    [c.13]    [c.218]    [c.62]    [c.459]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.59 ]




ПОИСК





Смотрите так же термины и статьи:

Вагнер



© 2025 chem21.info Реклама на сайте