Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие с алкилирующими агентами

    Рассматривая взаимодействие гомологов бензола с разными алкилирующими агентами в широком диапазоне условий, авторы значительное внимание уделяют производству этилбензола, изопропилбензола, додецилбензола и некоторых других, составляющих основу крупнотоннажных процессов алкилирования. Они стремились акцентировать внимание на важнейших сторонах рассматриваемой проблемы выяснении влияния строения на реакционную способность реагентов, установлении с помощью физико-химических методов (меченых атомов, ЭПР, ИКС, УФ, ЯМР-спектроскопии и др.) тонкого механизма реакции и т. д., [c.7]


    При наличии у заместителя пары свободных электронов он может вступить в химическое взаимодействие с алкилирующим агентом. [c.43]

    За последние годы в литературе появилось огромное число публикаций об изучении зависимости состава и структуры алкилароматических углеводородов от условий проведения реакции алкилирования. Учитывая практическую и теоретическую ценность подобных сведений, эти данные за период с 1962 г. систематизированы в табл. 2.6. Здесь приведены сведения о зависимости состава ароматических углеводородов, получаемых при алкилировании бензола олефинами, галогенидами и спиртами, т. е. основными алкилирующими агентами. Представлены также результаты взаимодействия бензола с парафинами и циклопарафинами, так как это направление весьма перспективно. [c.47]

    Следует заметить, что при взаимодействии бензола с олефинами и алкилгалогенидами используют небольшие (каталитические) количества и протонных кислот, и систем типа МХ-НХ. Применение спиртов в качестве алкилирующих агентов приводит к дезактивации каталитических систем как за счет разбавления водой, так и в результате их химического разложения. [c.63]

    При взаимодействии со смесью алкилирующих агентов степень удаления тиофена выше, чем с любым из этих соединений, взятым в отдельности (рис. 47). Скорость алкилирования тиофена наиболее активными непредельными соединениями при оптимальном со- [c.218]

    Реакции алкилирования. Действие алкилирующих агентов на моносахариды, например глюкозу, приводит к образованию неполных и полных простых эфиров. При этом наиболее активно взаимодействует полуацетальный гидроксил. В результате образуются простые эфиры — глюкозиды  [c.242]

    Одной из характерных химических реакций моносахаридов является их взаимодействие с алкилирующими агентами, приводящее к образованию соединений типа простых эфиров. Особенно легко реагирует гликозидный гидроксил. При простом нагревании со спиртами в присутствии кислотных катализаторов образуются построенные по эфирному типу гликозиды. Роль спиртового компонента в этой реакции может взять на себя и вторая молекула моносахарида. В результате такой реакции из двух молекул моносахарида с потерей воды образуется молекула дисахарида  [c.299]

    В результате кватернизации пиперидина образуются смеси. Количественное соотношение компонентов смеси зависит не столько от конформации исходного соединения, сколько от относительных скоростей аксиальной или экваториальной атаки атома азота алкилгалогенидами. Аксиальному подходу препятствуют аксиальные водороды метиленовых групп в положениях 3 и 5 с другой стороны, экваториальный подход затруднен тем, что он способствует невыгодному диаксиальному взаимодействию Ы-заместителя с теми же водородами. Количественное соотношение компонентов в полученной смеси в любом случае зависит от нескольких факторов характера растворителя, а также от строения исходного пиперидина и алкилирующего агента. В частности, метилирование про- [c.370]


    При алкилировании соединения 21, независимо от природы алкилирующего агента и условий реакций, алкильный остаток присоединяется только к атому азота N-5. Изомер 20 взаимодействует с метиловым эфиром и-толуолсульфокислоты или диметилсульфатом как в растворителе, так и при сплавлении при температуре не выше 100 С, образуя продукты О-метилирования 24. [c.238]

    Региоселективное алкилирование (см. также с. 395 и сл.) 1,3-дикетонов и Р-кетоэфиров возможно также и в положение с низкой СН-кислотностью (у-алкилирование). При этом образуется дианион, который взаимодействует с эквивалентным количеством алкилирующего агента К-6 [10]. [c.193]

    Эти данные показывают, что когда фенолят-ион сильно сольватирован или связан с небольшим катионом в прочную ионную пару, то он реагирует преимущественно по углеродному атому. По-видимому, сольватация или взаимодействие с катионом происходят за счет атома кислорода, который становится экранированным от алкилирующего агента. С другой стороны, свободный фенолят-ион или фенолят-ион, связанный в ионную пару с объемистым или сильно сольватированным катионом, реагирует преимущественно по кислородному атому. Доли С-алкили-рования в диметиловом эфире этиленгликоля и в тетрагидрофуране заметно отличаются друг от друга. Диэлектрические проницаемости этих растворителей почти одинаковы (6,8 и 7,3 соответственно), но эфир гликоля лучше сольватирует катионы. [c.313]

    Вагнер и Меервейн высказали мнение, что одной из стадий изомеризации алкильной группы должна быть стадия образования карбониевого иона, который может образоваться при взаимодействии алкилирующего агента с катализатором. Совершенно ясно, что как внутримолекулярные гидридные переносы, так и скелетные перегруппировки зависят от величины энергетических барьеров, определяющих тенденцию к изомеризации до получения стабильных промежуточных карбокатионов. Например, алкилирование бензола трет-бутилхлоридом или изобутилхлоридом при контакте с А1С1з дает лишь грет-бутил-бензол (что объясняется большим различием в стабильности первичного и третичного карбокатионов), тогда как алкилирование трет-пентилхлоридом дает смесь продуктов, что можно [c.100]

    В основе алкилирования НК лежат такие реакции как депури-низацня с разрывом сахарно-фосфатной цепи в ДНК, взаимодействие алкилирующих агентов с адениловой, цитидиловой и тими-диловой кислотами с последующей утратой способности алкилированных А, Ц и Т спариваться с комплементарными основаниями, взаимодействие с фосфатными группами НК, взаимодействие двух функциональных групп алкилирующего агента с нуклеофильными группами НК Так, например, в случае удаления гуанина из ДНК под влиянием какого-либо алкилирующего агента могут обнаружиться различные варианты изменений восстановление исходной пары Г Ц, ее выпадение, перекрестная замена Г = Ц на Т = А или на Ц = Г, простая замена Г Ц на А = Т [c.221]

    При отсутствии алкилирующего агента дихлорметан, являющийся растворителем, начинает взаимодействовать с фенолят-ным анионом, образуя в качестве побочного продукта диарил-оксиметан [29]. Небольшие изменения в условиях проведения этой реакции позволяют получать этот продукт с очень высоким выходом [234]. С этой целью твердый порошкообразный гидроксид калия и фенол перемешивают в метиленхлориде в присутствии 5—10 мол.% аликвата 336 в течение 8—16 ч при комнатной температуре. При использовании водного раствора гидроксида щелочного металла или менее липофильного катализатора— ТЭБА скорость реакции резко снижается. Метиловые эфиры катехинов получают, вводя в реакцию метиленбромид, водный гидроксид натрия и адоген 464 в качестве ката- [c.155]

    Экспериментально подтверждено, что скорость и направленность химических реакций, в том числе реакции алкилирования,. в значительной степени зависят от распределения электронной плотности во взаимодействующих компонентах реакции. В соответствии с этим целесообразно обобщить имеющиеся в литературе данные о молекулярных диаграммах алкилирующих агентов и ароматических углеводородов. Анализ материалов показал, что в основном расчеты носят случайный, несистематический характер это привело к необходимости определения молекулярных диаграмм ряда алкилирующих агентов исходных и полученных ароматических соединений. Использовано несколько современных методов расчета, что позволяет сопоставить полученные данные и подтвердить преимущества или недостатки каждого (исследования проведены совместно с сотрудниками ИОХ АН СССР А. И. Иоффе, В. И. Фаустовым и С. П. Зильбергом). [c.29]

    Обычно рассматривают соотношения изомеров мета1пара и орто/пара. Если на соотношение мета/пара влияют электронные сдвиги заместителя и энергетические факторы алкилирующего агента, то на соотношение орто1пара — фактор стерических препятствий и химического взаимодействия. Теоретическое соотношение изомеров орто/пара, равное 2 1, снижается по мере увеличения объема заместителя или атакующего агента. [c.42]


    В процессе реакции AI I3 в первую очередь расходуется на взаимодействие с алкилирующим агентом, а поэтому концентрация комплексов AI I3 с продуктами реакции крайне мала. [c.72]

    Интересно отметить, что структура группы, присоединяющейся к ароматическому ядру, может определяться стерическими затруднениями. Известно, что третичная алкильная группа не может присоединяться в орго-положение к метильному заместителю. Именно этим и объясняется тот факт, что грег-бутил-хлорид не взаимодействует с га-ксилолом. Если же использовать в качестве алкилирующего агента трет-пентилхлорид, то алкилирование протекает с образованием лишь одного продукта с выходом более 50%, что можно объяснить следующей схемой  [c.101]

    Большой интерес исследователей вызывали реакции ароматических углеводородов с алкилирующими агентами, содержащими разные функциональные группы при разных углеродных атомах. Состав получаемых соединений можно контролировать условиями реакции. В мягких условиях (1) происходит взаимодействие молекул ароматического соединения с углеродным атомом алкильной группы, соединенной с наиболее подвижным заместителем в более жестких условиях (2) они оба вступают в реакцию алкилирования  [c.136]

    Алкилирующие агенты, в частности олефины, при взаимодействии с кислотными катализаторами способны димеризоваться и тримеризоваться с образованием более высокомолекулярных ароматических углеводородов. Подобные превращения могут протекать и при отщеплении от полиалкилбензолов алкилкарбо-ниевых ионов, которые в результате элиминирования протона образуют олефин.. По-видимому, реакциями полимеризации олефинов и распадом промежуточных карбокатионов объясняется появление пропил- и бутилбензолов при алкилировании бензола этиленом. [c.152]

    В ходе опытов с продуктами первой стадии, где в качестве алкилирующего агента применяли изобутилен, важное значение имело взаимодействие высокомолекулярных олефинов с изобутаном. По-видимому, начальным актом всего процесса является протонирование тяжелых олефинов с образованием тяжелых изо-.алкильных карбкатионов. Эти карбкатионы в значительной мере подвергаются крекингу и дают главным образом карбкатионы и олефины С4—Сд. Очевидно, эти олефнны, в свою очередь, быстро Т1ротонируются, образуя новые карбкатионы. В результате переноса гидрид-ионов от молекулы изобутана или от углеводородов, растворенных в кислоте, получаются изопарафины С4—Сд. Очевидно, что тяжелая фракция и полимеры образуются в определенной мере в ходе второй стадии, но большая часть этих соединений появляется, по-видимому, на первой. [c.110]

    Гомологи ацетилена можно получать взаимодействием описываемых ниже металлических производных ацетилена или моыоалкилацети-ленов с алкилирующими агентами (галоидными алкилами, диалкил-сульфатами)  [c.77]

    Высокая реакционная способность соединения 5 в качестве алкилирующего агента обеспечивает возможность взаимодействия его даже с такими достаточно слабыми нуклеофилами, как карбоксилат-анионы, с получением, например, сложньпс эфиров производных хризантемовой кислоты (схема 8) [ 17]. [c.40]

    Ацетилен взаимодействует с 2 молями ароматического соединения, давая 1,1-диарилэтаны, а другие алкины, если и реагируют, то плохо. Спирты более реакционноспособны, чем алкилгалогениды, хотя при катализе реакции кислотами Льюиса требуется большее количество катализатора, так как он расходуется на комплексообразование с группой ОН. Для катализа реакций с участием спиртов часто применяют протонные кислоты, особенно серную. При использовании в качестве реагентов сложных эфиров реакция осложняется конкуренцией между алкилированием и ацилированием (реакция 11-15). И хотя в этой конкуренции обычно преобладает алкилирование и вообще ею можно управлять правильным подбором катализатора, сложные эфиры карбоновых кислот редко используются в реакциях Фриделя — Крафтса. Среди других алкилирующих агентов — тиолы, сульфаты, сульфонаты, алкилнитросоединения [199] и даже алканы и циклоалканы в условиях, когда их можно превратить в карбокатионы. Здесь следует отметить и этиленоксид, с помощью которого можно ввести в кольцо группу СН2СН2ОН, и циклопропан. Для реагентов всех типов реакционная способность соответствует следующему ряду аллильный и бензиль-ный тип>третичный>вторичный> первичный. [c.349]

    Взаимодействие анилина с хлоруксусной кислотой проводят в водной среде, применяя нейтрализующие агенты, так что фактически алкилирующим агентом служит хлорацетат-анион. Целевой продукт этой реакции — Л/-фениламиноуксусная кислота (фенил-глицин), используемая для синтеза индиго. Однако при реакции с большой легкостью образуется и не находящее практического применения диалкильное производное — Л -фенилиминодиуксусная кислота  [c.241]

    Интенсивность реакций перераспределения водорода значительно усиливается и эта реакция становится основной, если в качестве алкилирующего. агента вместо соответствующего олефина применять сложный алкильный эфир. Этого и следовало ожидать на основании предложенного механизма,. так как сложный эфир является источником высокой, концентрации карбоний-ионов,. принимающих участие в (обычно) необратимой первой ступени цепной реакции, давая трет-бутильные ионы, претерпевающие реакцию автоалкилирования вследствие исчерпания ресурсов олефинов для стадии 2. Так, в присутствии хлористого алюминия в качестве катализатора взаимодействие изобутана с хлористым изопропилом при 40—70° приводило к образованию пропана (выход 60—90%), наряду с жидким продуктом, содержавшим несколько больше-октанов, чем гептанов [30]. В присутствии фтористого бора реакция изобутана с фтористым изопропилом при —80° ведет к образованию 2,2,4-триметилпен-тана в качестве основного компонента жидкого продукта на 1 моль фтористого-пропила, восстанавливающегося до пропана, расходуются 2 моля изобутана [10]. В присутствии серной кислоты в качестве катализатора реакция изобутана с тре/тг-амиловьш спиртом при 2° давала изопентан с выходом 50%. Аналогично при взаимодействии изопентана с тре/п-бутиловым спиртом при 27° получался изобутан с выходом 111% [22]. Образование продуктов перераспределения водорода при этих катализируемых серной кислотой реакциях сопровождалось расходованием изопарафинового сырья в количестве, превышающем эквимолярное при взаимодействии около 1,8 молей изобутана и около- [c.185]

    Взаимодействие фепоксид-иопа с алкилирующим агентом с образованием алкплароматпческого эфира также является О-алкилировапием. [c.291]

    Все имеющиеся данные видeтeJ[ь твyют о том, что анион енола активного метиленового соединения взаимодействует с алкилирующим агентом по реакции бимолекулярного нуклеофильного замещения (5дг2) [7—9]. Поэтому можно ожидать, что строение алкилирующего агента будет влиять на течение реакции алкилирования таким же образом, как строение молекулы влияет на другие реакции, протекающие по типу 5 -2. [c.127]

    Аденин реагирует с бензилбромидом в диметилформамиде исключительно по Мз-атому, тогда как взаимодействием соли аниона с этилметансульфонатом получают смесь 3-этил-, 1-этил-и 9-этиладенинов. Трудно объяснить, по каким причинам другие алкилирующие агенты, например МезС—СО—О—СН2С1, в сочетании с карбонатом калия алкилируют аденин исключительно по положению 9. [c.360]

    Алкилирование аниона, генерируемого из изохинохиназолина 39а действием сильных оснований, всегда протекает по атому углерода С7, независимо от природы алкилирующего агента, причем остановить реакцию на стадии моноалкилиро-вания не удается. Так, взаимодействие изохинохиназолина 39а в присутствии изопропилата натрия в изопропаноле с небольшим избытком метил- и этилиодида, бензилхлорида приводит к смеси соответствующего 7,7-диалкилпроизводного 57 и исходного вещества. [c.246]

    Ацилированные и алкилированные полиалкиленполиамины получают алкилированием ацилированных полиалкиленполиаминов, образующихся при взаимодействии триэтилентетрамина и бензойной кислоты или триэтилентетрамина и гидрированных кислот на основе канифоли, тетраэтиленпентамина и абиетиновой или масляной кислот, тетраэтиленпентамина и смеси бензойной и уксусной кислот или смеси абиетиновой и пропионовой кислот диэтилентриамина и пропионовой кислоты, диэтилентри-амина и смеси абиетиновой и уксусной кислот или смеси гидрированных кислот на основе канифоли и уксусной кислоты. В качестве алкилирующих агентов используют бутилбромид, бен-зил- или метилхлорид, этил- или гексилиодид. [c.239]

    Метод дает хорошие результаты при использовании алкилирующих агентов, содержащих дестаточно сильный электроотрицательный заместитель Z (2.4, а—д). Большинство промежуточных соединений (2.5), (2.6) выделены. В присутствии оснований (алкоголятов щелочных металлов, поташа, триэтиламина) они образуют анион (2.7), циклизация которого протекает путем внутримолекулярного взаимодействия реакционных центров. Анион (2.8) переходит в имин (2.9) и при наличии подвижного атома водорода в псшожении 2 стабилизируется в виде аминов (2.10)-(2.12). Этим методом получены 3-аминобензо[Ь]фураны (2.10) [118-128], тиено[3,2-Ь]фураны (2.11) [129, 130] и 3-аминофуро [2,3-Ь] пиридины (2.12) [131, 132]. [c.28]

    Пиридиниевые соли, полученные из 2,4,6-тризамещенных пиридинов взаимодействием первичных аминов с перхлоратами 2,4,6-тризамещенных пирилиевых катионов, представляют собой удобные алкилирующие агенты, поскольку заместитель при атоме азота может быть перенесен на введенный в реакцию нуклеофильный реагент [227]. Этот процесс в целом можно рассматривать как метод превращения первичных аминов в другие различные соединения. [c.140]


Смотреть страницы где упоминается термин Взаимодействие с алкилирующими агентами: [c.139]    [c.139]    [c.139]    [c.294]    [c.126]    [c.197]    [c.62]    [c.76]    [c.108]    [c.112]    [c.151]    [c.506]    [c.1755]    [c.131]    [c.121]    [c.155]    [c.167]   
Смотреть главы в:

Органическая химия нуклеиновых кислот -> Взаимодействие с алкилирующими агентами




ПОИСК







© 2025 chem21.info Реклама на сайте