Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожижение эффективность

    В наших опытах по псевдоожижению порошка триполифосфата натрия при одинаковой средней производительности при импульсном псевдоожижении со скважностью 0,5 снижение уноса достигало 20%. С увеличением скорости газа (числа псевдоожижения) эффективность импульсного псевдоожижения возрастала. [c.250]

    Отличительной особенностью гетерогенно-катали-тических реакторов является наличие твердого катализатора. Различают реакторы с неподвижным и движущимся слоем катализатора. Для подвода или отвода тепла, а также для усиления массопереноса применяют различные режимы псевдоожижения. Эффективным способом ускорения процессов переноса для гетерогенных и гетерогенно-каталитических реакций является пульсационное воздействие на стационарные слои зернистого материала. Гетерогенно-каталитические реакции обычно сопровождаются массопереносом от ядра потока к зерну катализатора и массопереносом внутри зерна, поэтому выявление лимитирующей стадии является сложной задачей при проектировании гетерогеннокаталитических реакторов. Аналогично решаются технические проблемы, возникающие при проведении гетерогенных химических процессов. [c.59]


    Экстремальный характер зависимости степени превращения от линейной скорости можно объяснить тем, что при определенных условиях псевдоожижения эффективность контактирования твердых частиц с газом достигает оптимального значения. При этом вследствие увеличения пульсационных скоростей частиц и интенсивности циркуляции повышается истинная концентрация катализатора в единице объема слоя, что равносильно уменьшению объемной скорости. [c.88]

    В последнее время для устранения опасности каналообразования в реакторах с псевдоожиженным слоем катализатора с целью улучшения барботажа и достижения более эффективного контакта газосырьевой смеси с катализатором применяют секционирование. Для регулирования теплового режима в них используют и посекционный ввод холодного водорода. [c.50]

    Рис. уП1-11. Рост эффективности псевдоожижения  [c.265]

    При помощи этих понятий Лева определяет эффективность псевдоожижения, или коэффициент полезного действия т). Эта величина представляет собой отношение энергии, сообщенное псевдоожиженному слою, за вычетом энергии, требующейся для его расширения, к общей энергии, сообщенной слою. В соответствии с этим [c.266]

    Эти корреляции подтверждают обычные наблюдения, что малые частицы легче подвергаются псевдоожижению, но при этом слой больше расширяется. Псевдоожижение может протекать эффективнее, если большая часть подводимой энергии поглощается при хаотическом движении частиц, так как именно их подвижностью и обусловлены особенности псевдоожиженного состояния. Насколько нужно увеличить скорость против минимальной скорости псевдоожижения, в общем случае еще не выяснено. [c.266]

    При высокой активности катализатора высота слоя может не превышать высоты выступающего над решеткой распределителя в случае необходимости высоту слоя повышают. Было уделено большое внимание эффективному отпариванию катализатора, высота отпарной секции (десорбера) была увеличена и в ней установлены каскадные тарелки для большего времени пребывания катализатора в этой части реактора. На некоторых установках пневмотранспорт заменили на систему с U-образными линиями. Одна из подобных установок переведена на двухступенчатую систему крекинга в линии с упомянутым выше распределителем происходит крекинг свежего сырья, а выше, в псевдоожиженный слой, подается рециркулят. [c.56]

    Если жидкость имеет большую плотность, чем твердые частицы, то эффективное псевдоожижение достигается при прохождении жидкости через слой сверху вниз. Показано что при движении воды сверху вниз через слой легких частиц для определения расширения слоя также применимо уравнение (II, 9) с приведенными выше значениями п. [c.49]


    Более обстоятельный анализ процессов стесненного осаждения и псевдоожижения, основанный на эффективных характеристиках систем и охваты-ваюш ий все режимы обтекания частиц потоком, выполнен Вахрушевым [9, 10]. — Прим. ред. [c.52]

    Поскольку пузыри обычно наблюдаются в псевдоожиженном слое с газообразным ожижающим агентом, где отношение плотностей обеих фаз велико, то из уравнений движения исключа-ч ются члены, выражающие выталкивающую силу, эффективную массу и скорость изменения количества движения ожижающего агента. Эффектом вязкости газовой фазы также пренебрегают, оставляя в тензоре напряжений для ожижающего агента только член, выражающий давление. Помимо этих допущений при анализе движений пузырей используют уравнение движения без учета членов, определяющих напряжения, возникающие при взаимодействии между твердыми частицами. Последнее допущение, однако, не имеет экспериментального обоснования, а скорее продиктовано соображениями удобства анализа ведь известно, что эффективная вязкость твердой фазы достаточно веника Можно предположить, что во многих случаях члены, исключенные из уравнений, играют значительную роль в непосредственней близости от пузыря. [c.95]

    Из уравнения (VI,15) видно, что псевдоожиженный слой обладает структурированной вязкостью, изменяющейся под действием напряжения сдвига. Только нри очень низких напряжениях сдвига получают эффективную вязкость не зависящую, в соответствии с уравнением (VI,16), от этого напряжения. При высоких скоростях ожижающего агента цв приближается к предельному значению. Чем меньше диаметр частиц, тем меньше экспонента в уравнении (VI,16) и тем быстрее Хв достигает предельной величины. В случае крупных частиц этот предел обычно не может быть достигнут. [c.242]

    Оказалось, что в целом по режиму работы регенератор подобен аппарату с Хорошим перемешиванием без существенного байпаса газа через непрерывную фазу слоя, но в деталях этот вывод недостаточно строг. Согласно измерениям, проведенным в лаборатории Шелла, в плотной фазе псевдоожиженных слоев диаметром до 500 мм эффективные коэффициенты диффузии равны 0,46— 0,93 mV . Авторы приводят свою интерпретацию результатов эксперимента Данквертса , полагая, что они свидетельствуют [c.260]

    Имеются в виду коэффициенты эффективной диффузии газа в псевдоожиженном слое. — Прим. ред. [c.260]

Рис. VII-7. Эффективная продольная теплопроводность псевдоожиженных слоев, составленных из частиц разных размеров ii. Рис. VII-7. <a href="/info/499493">Эффективная продольная</a> <a href="/info/326735">теплопроводность псевдоожиженных слоев</a>, составленных из частиц разных размеров ii.
    Гамильтон с соавт. полагают, что эффективные значения /ш, найденные в опытах по перемешиванию, слишком малы максимальное наблюдаемое значение близко к 2. При наличии циркуляции в газо-жидкостной системе относительный объем жидкости в кильватерной зоне пузыря превышает 2, так что с этой точка зрения псевдоожиженный слой подвержен циркуляции в незначительной мере . При исследовании двухмерных псевдоожиженных слоев тормозящее воздействие плоских стенок аппарата, вероятно, обусловливает уменьшение циркуляции. Предстоит еще выяснить, действительно ли это является особенностью двухмерного слоя в отличие от трехмерного. [c.309]

    Эффективные значения /ш, действительно, зависят от интенсивности циркуляции. Однако при сопоставлении этих значений для газо-жидко-стных псевдоожиженных систем необходимо учитывать, что для первых значительно меньше кильватерный угол т. е. ниже истинные значения /щ,, нежели для псевдоожиженного слоя. Следовательно, вывод о более низкой интенсивности циркуляции в последнем не является бесспорным. — Прим. ред. [c.309]

    Контакт газа с твердыми частицами в псевдоожиженных системах не всегда определяет эффективность процесса в целом оптимальная скорость обмена между пузырями и частицами в заданных условиях зависит от скорости реакции. Например, крекинг нефтяных углеводородов на алюмосиликатном катализаторе происходит очень быстро, причем реакция практически целиком завершается в транспортных линиях, питающих реактор с псевдоожиженным слоем катализатора. Это, конечно, не означает, что псевдоожиженный слой не нужен (он необходим для стабилизации температуры), но в этих условиях эффективность контакта в псевдоожиженном слое не играет роли. [c.336]

    Из приведенных данных видно, что проблема межфазного обмена газом нуждается в тщательной экспериментальной и теоретической разработке, поскольку, как было уже показано, эффективность реактора с псевдоожиженным слоем в значительной мере зависит от массонереноса, когда он протекает очень медленно и лимитирует скорость процесса в целом. [c.366]


    Эффективность реактора с псевдоожиженным слоем зависит от числа псевдоожижения Иногда на практике степени [c.368]

    Повышение неоднородности псевдоожижения при использовании грубого газораспределителя подтверждено экспериментально недавними исследованиями двухмерных систем, снабженных различными распределительными устройствами. Установлено, что решетка с большим количеством отверстий дает неудовлетворительное качество псевдоожижения. В зависимости от числа отверстий в решетке и скорости газа в слое вблизи решетки наблюдались зоны, в которых большинство твердых частиц было абсолютно неподвижно, а газ проходил преимущественно через остальную часть слоя. При замене полученной спеканием решетки на перфорированную отмечалось заметное ухудшение эффективности реактора с псевдоожиженным слоем. [c.370]

    Перемешивание твердой фазы в псевдоожиженном слое, как уже сказано выше, достигается за счет восходящего потока газа (жидкости), под действием которого частицы приобретают хаотическое, пульсационное движение, перемещаясь в объеме слоя. В то же время происходит перемешивание ожижающего агента, так как он увлекается твердыми частицами и перемещается вместе с ними в объеме слоя. По-видимому, чаще всего определяющим является перенос массы газа (жидкости) вместе с агрегатами частиц, а также с отдельными частицами, окруженными пленкой ол<ижающего агента [181, 247, 514, 564]. В отдельных случаях может играть некоторую роль адсорбционио-десорбционный перенос ожижающего агента [193, 344]. Описанный механизм, очевидно, предполагает, что при однородном псевдоожижении эффективность перемешивания ожижающего агента должна быть значительно понижена это подтверждается экспериментальными данными (см. ниже). Между прочим, в этом случае может играть заметную роль фильтрационное перемешивание ожижающего агента [181]. [c.170]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

Рис. У111-12. Эффективность псевдоожижения (цифры на кривых—диаметр частиц в ммУ 1 2. Рис. У111-12. <a href="/info/326704">Эффективность псевдоожижения</a> (цифры на кривых—диаметр частиц в ммУ 1 2.
    Пример VUI-4. Слой частиц толщиной 300 лж подвергают псевдоожижению воздухом при 24 °С и давлении 9,8-10Vhj 2 (1 ат). Средний диаметр частиц 0,3 жл, форма их соответствует однородным острогранным песчинкам, истинна г плотность материала частиц 1730 кг/мК Найти пористость и эффективность псевдоожижения при скорости потока в 4 раза большей [c.268]

    Основная часть имеющихся данных была обработана Вэнь и Дева132 с применением таких параметров псевдоожижения, как степень расширения слоя, критическая скорость псевдоожижения и эффективность псевдоожижения. [c.272]

    Эффективность псевдоожижения т) и степень расширения слоя Му можно определить по рис. У1П-12 и УИМЗ. [c.272]

    Секционирование слоя позволяет повысить эффективность контакта паров и катализатора, так как в противоположность сплошному псевдоожиженному слою каждая секция работает при более узких пределах изменения состава входящих и выходящих паров. При противотоке катализатора и паров более активный свежий катализатор контактирует с более каталитически стойкими парами, и наоборот. Установка ступенчато-противоточного каталитического крекинга (СПКК) была скомбинирована с блоком каталитического крекинга с реактором лифтного типа [12]. Продукты реакции после прямоточного лифт-реактора отделяются от катализатора и поступают в реактор СПКК, где процесс углубляется. [c.57]

    Быстрое движение частиц об условливает равномерное распределение температуры в слое, в результате чего устраняются локальные перегревы, имеющие место в реа.ктор.ах вытеснения с неподвижным слоем твердых частиц. Это дает существенные преимущества при проведении реакций в адиабатических условиях, когда температура процесса определяется теплотой самой реакции. В реакторе с псевдоожиженным слоем отвод тепла для снижения температуры до заданного уровня осуществить труднее, чем в реакторе с неподвижным слоем, поскольку в нем сложнее создать необходимую поверхность теплообмена без снижения эффективности псевдоожижения. Конечно, могут быть использованы раз.бавленные среды, о.днако, это может привести к снижению скорости реакции. Еще одним недостатком такого реактора является истирание катализатора, в результате которого в газовый поток попадает пыль. [c.20]

    Иной подход был реализован з для корреляции данных по отстаиваншо и псевдоожижению в колонне диаметром 101,6 мм при работе со стеклянным (диаметром 0,711 мм) и стальными (диаметром 0,533 мм) шариками н водными растворами глицерина. Порозность слоя изменялась в пределах 0,58—0,96, значение числа Рейнольдса — от 0,001 до 585. Величины скоростей отстаивания и псевдоожижения были аппроксимированы в виде функции порозности на основе модифицированного, закона Стокса з . В расчетах использовалв значения эффективной плотности и вязкости псевдоожиженной системы. [c.52]

    Эффективная динамическая вязкость псевдоожиженного слоя определялась с помощью вискозиметра Куэтта при использовании газообразного и жидкого ожижающих агентов. В обоих случаях полученные значения вязкости слоя очень велики (порядка 10—20 П), так что вязкость ожижающего агента, по-видимому, очень мало влияет на сопротивление слоя сдвигу. По этой причине целесообразно рассматривать измеренную опытнылг путем вязкость как Соответствующая объемная вязкость в настоящее время не люжет быть измерена экспериментально предполагается, что величина /. превышает х . Относительно р% нет ни теоретических, ни экспериментальных данных. При анализе влияния изменений граничных условий на свободной по- [c.90]

    Можно считать, что в непрерывной фазе порозность постаянаа и равна как й в момент начала псевдоожижения, и что эффективный коэффициент диффузии равен (см. ниже). Если предположить далее, что конвективный член равен ШщдсШу и реагент диффундирует через неподвижную пленку 2р без разложения, то сокращается. Тогда уравнение диффузии принимает одинаковую форму для пузыря и непрерывной фазы. Это означает, что эквивалентная толщина пленки одинакова для обеих фаз  [c.205]

    Этот результат представляется несколько неожиданным. Известно (см. рис. Х-26), что коэффициенты тепломассообмена между газом и твердыми частицами изменяются скачком при переходе от неподвижного сдоя к псевдоожиженному. Это, видимо, справедливо и для коэф1фициентов продольной эффективной теплопроводности газа (см. глава X, раздел III). — Прим. ред. [c.205]

    Де Мария и Лонгфильд на входе газа в псевдоожиженные слои подавали ступенчатый импульс газа-трасера, равномерно распределяя его по всему поперечному сечению аппаратов диаметром 102, 710, 2130, 3960 мм. Последние два аппарата былп снабжены внутренними нагревательными элементами. Авторы обнаружили весьма заметное повышение эффективного коэффициента осевой диффузии с увеличением диаметра так, для слоя диаметром 3960 мм он был примерно в 30 раз выше, чем для слоя диаметром 25,4 мм. [c.260]

    Одна иа характерных черт псевдоожиженных газами систем, соетлит в образовании газовых пузырей, способствующих циркуляции твердых частиц и обусловливающих высокую теплопроводность слоя, но вредных с точки зрения механических и химических свойств системы. Действительно, интенсивная турбулизация, вызванная движением пузырей, может привести к истиранию катализатора. Кроме того, поскольку газовые пузыри несут с собою лишь малое количестпво твердых частиц, то возможен проскок большей части газа через слой без контакта с твердой фазой, а значит, и уменьшение общей эффективности процесса по сравнению с реактором с неподвижным слоем при тех же объемной скорости газа и массе катализатора. [c.333]

    В настоящий момент мы не умеем достоверно определять продольное перемешивание в непрерывной фазе и скорости движения пузыря относительно этой фазы. Вместе с тем из наблюдений и логических построений известно, что в рабочих условиях газ в непрерывной фазе частично перемешивается " . Из-за отсутствия более подробной информации Кунии и Левен-шпиль предложили модель, в которой эффективный диаметр пузыря (рассчитанный в соответствии с этой моделью по достигнутой степени химического превращения в псевдоожиженном слое) используется в качестве однопараметрической регулируемой константы, аналогично тому, как это предлагалось ранее [c.359]

    В этих условиях эффективность реактора с псевдоожиженным слоем будет, возможно, соответствовать теоретически рассчитанной по моделям, учитывающим межфазный обмен газом только за счет его циркуляции через пузырь и облако. Например, при использовании катализатора с размером частиц 360 мкм было установлено что экспериментальные данные хорошо согласуются с упомянутой выше моделью Однако при уменьшении размера частицы падает интенсивность циркуляции газа через облако и пузырь объем облака становится меньше, так что газ из нузыря контактирует с относительно меньшим числом твердых частиц. Отношение Ul,lu f при этом весьма велико, поэтому время пребывания газа, находящегося в пузыре, составляет лишь некоторую долю от времени его пребывания в непрерывной фазе следовательно, степень проскока будет высокой. Эти общие рассуждения не подкреплены экспериментальными наблюдениями. [c.363]

    VIII-8), что в его экспериментальном диапазоне зависимость между j i и к, по существу, не зависит от изменения высоты осевшего слоя (к аналогичным выводам пришли также Оркатт с соавт. и Ланкастер ). Это означает, что эффективности катализатора в верхней и нижней частях реактора сопоставимы. Данное заключение примечательно, так как, согласно измерениям, дискретная фаза диспергирована более тонко в основании, чем в верхней части псевдоожиженного слоя со свободно барбо-тирующими пузырями Эти наблюдения качественно объяснимы, если предположить, что уменьшение поверхности пузыря и скорости переноса по высоте слоя сопровождается одновременным понижением скорости реакции за счет падения концентрации реагента (т. е. перемешивание в непрерывной фазе неполное). Следовательно, если, например, скорость реакции была бы лимитирующим фактором в основании слоя, то это положеняе должно было бы еще сохраниться на выходе из него, где скорости реакции и массопередачи были бы меньше и в результате не наблюдалось бы никакого влияния высоты слоя на его характеристику. Иная ситуация может возникнуть при больших расходах газа, когда возможно уменьшение скорости межфазного обмена газом из-за образования очень больших пузырей или при высоких скоростях реакции. [c.367]

    Возрастание Ар в псевдоожиженном слое с увеличением размера твердых частиц объясняют повышением скорости скольжения для более крупных частиц, большей турбулентностью потока уменьшением склонности к агрегированию, повышением эффективной скорости потока относительно частиц, принимающих участив во внутренней циркуляции в слое и т. п. Сделана попытка объяснить влияние диаметра и удельного веса частиц в связи с их нульсацпопным движением в слое. [c.461]


Смотреть страницы где упоминается термин Псевдоожижение эффективность: [c.127]    [c.84]    [c.18]    [c.179]    [c.327]    [c.335]    [c.359]    [c.367]    [c.368]    [c.369]    [c.464]   
Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.18 , c.254 , c.255 , c.256 ]

Химическая кинетика и расчеты промышленных реакторов Издание 2 (1967) -- [ c.18 , c.254 , c.255 , c.256 ]

Химическая кинетика и расчеты промышленных реакторов (1964) -- [ c.18 , c.265 , c.266 , c.268 ]

Химическая кинетика м расчеты промышленных реакторов Издание 2 (1967) -- [ c.18 , c.254 , c.255 , c.256 ]




ПОИСК







© 2024 chem21.info Реклама на сайте