Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика, первый закон для закона

    Математическое выражение первого закона термодинамики показывает, что закон этот дает только количественную характеристику одного из свойств тепловой и внутренней энергии системы эквивалентность перехода их в работу и, наоборот, работы в тепловую и внутреннюю энергию. Однако этот закон не выявляет направленности процесса, т. е. не дает качественной характеристики проявления тепловой энергии. Эту вторую сторону важнейшего свойства тепловой энергии — направленность ири переходе ее в работу или в другой вид энергии — устанавливает второй закон термодинамики, на котором мы остановимся ниже (стр. 158). При расчете технологических процессов исключительно большое значение имеют процессы, связанные с расширением или сжатием газа. Если в подобного рода процессах под влиянием внешнего давления Р происходи г изменение объема данной системы от Vi до V2, то работа, совершаемая ею, равна  [c.67]


    Термодинамика, которая изучает состояния равновесия и переходы между ними, вынуждена использовать в своих теоретических исследованиях понятие равновесных процессов. Их значение особенно велико в связи с вторым законом термодинамики. Первый закон в форме его основных уравнений приложим в равной мере к равновесным и неравновесным процессам. Однако расчеты по первому закону во многих случаях могут быть количественно проведены только для равновесных процессов (вычисление работы). [c.36]

    ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА ПЕРВЫЙ ЗАКОН ТЕРМОДИНАМИКИ [c.43]

    Первый закон термодинамики. Первый закон имеет несколько различных формулировок. Его можно определить как закон сохранения энергии, из которого следует, что в любой изолированной системе, общий запас энергии сохраняется постоянным. Отсюда вытекает важная формулировка первого закона термодинамики. [c.149]

    Химическая термодинамика использует положения и выводы общей термодинамики. Первый закон (начало) термодинамики непосредственно связан с законом сохранения энергии, который был сформулирован в самом общем виде М. В. Ломоносовым (1748 г.). В середине XIX в. дальнейшее развитие данный закон получил в работах Р. Майера, Г. Гельмгольца, Д. Джоуля. [c.72]

    Зачастую важно и полезно оценивать процессы переноса тепла с точки зрения термодинамики. Все процессы и устройства передачи тепла внутренне необратимы и в конечном счете обеспечивают одностороннюю убыль полезной или располагаемой энергии, иногда называемую эксергией. Все более глубокое осмысление принципа сохранения энергии заставляет исследователей задаться вопросом, какая часть эксергии рассеивается при теплопередаче и какой наибольший термодинамический коэффициент полезного действия можно при этом обеспечить. С этой целью можно воспользоваться законами термодинамики. Первый закон термодинамики определяет уравнение сохранения энергии, тогда как второй закон зачастую вообще не используется для анализа процессов конвективного переноса. Однако для того чтобы определить условия, при которых имеет место минимальная потеря эксергии, т. е. минимальный прирост энтропии, можно воспользоваться вторым законом термодинамики. Такого рода анализ различных тепловых процессов подробно рассмотрен в работе [10]. [c.492]

    Термодинамика химическая — изучает химические реакции и фазовые переходы (растворение, испарение и кристаллизация чистых веществ и растворов и обратные им процессы), а также переход энергии из одной формы в другую и от одной части системы к другой в различных химических процессах и т. д. Важнейшими разделами этой науки являются термохимия, учение о химических и фазовых равновесиях, учение о растворах, теория электродных процессов, термодинамика поверхностных явлений и др. В основе Т. х. лежат общие положения и выводы термодинамики (первый закон термодинамики служит основой термохимии, второй закон термодинамики лежит в основе всего учения о равновесиях и др.). [c.135]


    В заключение этого раздела еще раз кратко сформулируем основные законы термодинамики. Первый закон термодинамики по существу представляет собой закон сохранения энергии, но ничего не говорит о вероятности того или иного превращения. Второй закон термодинамики ос- [c.317]

    Уравнение (1.13) выражает первый закон термодинамики для закрытых систем. Первый закон не исчерпывается уравнением (1.13), а содержит еще утверждение, что термодинамическая функция и, определяемая этим уравнением, является функцией только состояния системы. Следует отметить, что первый закон позволяет определить изменения внутренней энергии, но не абсолютную ее величину. [c.19]

    Первый закон термодинамики утверждает, что при превращении одной формы энергии в другую общее количество энергии сохраняется. На какие-либо другие ограничения этого процесса первый закон не указывает. Однако известно, что многие процессы характеризуются естественным направлением как раз с этим и связан второй закон. Например, газ расширяется в пустоту, но обратный процесс не происходит никогда, хотя это и не нарушило бы первый закон. Он не был бы нарушен и в том случае, если бы стержень с одинаковой температурой по всей длине стал горячим на одном конце и холодным на другом, но мы знаем, что это никогда не случится. Второй закон устанавливает критерий, позволяющий предсказать, может ли данный процесс идти самопроизвольно или нет, и поэтому он имеет большое значение для химии. [c.48]

    Первый аакон термодинамики. Первый закон термодинамики непосредственно связан с законом сохранения энергии, который устанавливает эквивалентность различных форм ее. Первый закон устанавливает связь между количеством теплоты, полученной или выделенной в процессе, количеством произведенной или полученной работы и изменением внутренней энергии системы. [c.183]

    Существует два основных закона термодинамики. Первый— закон сохранения энергии. Согласно ему различные виды энергии могут превращаться друг в друга, но общее количество энергии остается величиной постоянной. Общее количество энергии в какой-либо системе может увеличиться или уменьшиться за счет энергии окружающей среды. [c.16]

    Смешение газов может произойти обратимо, если за счет уменьшения грузов понизится внешнее давление. Газы при этом расширяются до тех пор, пока внутреннее и внешнее давления опять не уравновесятся. Обратимость проявляется в том, что при наложении прежних грузов снова восстанавливается первоначальное состояние. Когда газы расширяются, стенки передвигаются, и грузы при этом поднимаются. Следовательно, система производит работу. При этом в соответствии с первым законом термодинамики внутренняя энергия уменьшается (понижается температура). Поэтому при изотермическом смешении, чтобы обеспечить обратимое протекание процесса, система должна иметь контакт с нагревателем. В этом случае внутренняя энергия остается постоянной и согласно первому закону термодинамики количество тепла, которое сообщает системе нагреватель, равно работе, произведенной системой dQ -dA. [c.93]

    Согласно первому закону, если теплота превращается в работу или работа в теплоту, то количество механической работы эквивалентно количеству теплоты. Соотношение между теплотой д и работой А при изменении общей энергии системы АН устанавливается первым законом термодинамики. [c.47]

    О)гласно первому закону, если теплота превращается в работу или работа — в теплоту, то количество механической работы эквивалентно количеству теплоты. Соотношение между теплотой (д) и работой (у4) при изменении общей энергии системы (АЦ) устанавливается первым законом термодинамики. Изменение общей энергии системы (Аи) выражается разностью между количеством энергии в конечном состоянии ( /3) и начальным состоянием (их). Из постоянства запаса внутренней энергии изолированной системы непосредственно вытекает, что в любом процессе изменение внутренней энергии какой-нибудь системы равно разности между количеством сообщенной системе теплоты и количеством работы, совершенной системой, т. е. [c.60]

    Как было отмечено ранее, первый закон термодинамики устанавливает эквивалентность различных форм энергии, соотношение между изменением внутренней энергии, количеством подведенной или отведенной теплоты и совершаемой системой (или над системой) работой, а также постоянство энергии в изолированной системе. Однако первый закон термодинамики не отражает возможность и вероятность возникновения того или иного термодинамического процесса, связанного с превращением энергии или ее перераспределением. [c.57]

    Деформации подчиняются первому и второму законам термодинамики. Первый закон гласит, что затраченная работа равна изменению внутренней энергии системы минус выделившееся тепло [c.342]


    В отличие от первого закона термодинамики, второй закон обладает более ограниченной областью применения. Он носит статистический характер и применим поэтому лишь к системам из большого числа частиц, т. е. таким, поведение кото -рых может быть выражено законами статистики. [c.188]

    Первый закон термодинамики справедлив и для обычных систем, состояш,их из большого числа частиц, и для систем из небольшого числа частиц, и для отдельных частиц. Второй же закон носит статистический характер и относится исключительно к системам из очень большого числа частиц, так как только к таким системам строго применимы законы статистики. Если же рассматривать системы из не очень большого числа частиц, то выводы из второго закона не могут быть строго применимы к ним. К системам же из малого числа частиц второй закон не относится. [c.192]

    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, так же как и первый, был установлен как постулат, обоснованный всем опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо нз следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, по существу равноценные. Строгий вывод следствий из второго начала термодинамики связан со значительными затруднениями. Вслед за методом Карно — Клаузиуса — Томсона были разработаны два более строгих метода первый — киевским профессором Н. И. Шиллером в 1896 г. (этот метод в 1909 г. был развит Каратеодори) и второй К. А, Путиловым в 1937 г. [c.281]

    Второй закон термодинамики. Первый закон термодинамики гласит, что превращение одной формы энергии в другую происходит по закону эквивалентности когда одна форма энергии исчезает, появляется эквивалентное количество энергии другой формы. Однако опыт показывает, что, в то время как все формы энергии (механическая, электрическая, лучистая, химическая и т. д.) могут полностью превращаться в тепловую энергию, тепло нельзя полностью превратить в энергию механическую, электрическую, химическую и т. д., всегда остается часть тепла, которая не может превращаться в другие формы энергии. Таким образом, тепловая энергия в известном смысле является низшей формой энергии, так как она лишь частично в определенных условиях превращается в механическую или электрическую энергию. [c.188]

    Все химические превращения подчиняются законам термодинамики. Первый закон, называемый законом сохранения энергии, гласит, что для любого химического процесса общая энергия системы и ее окружения всегда остается постоянной. Это означает, что энергия не исчезает и не возникает вновь, так что если какая-либо химическая система приобретает энергию, то такое же количество энергии должно изыматься из ее окружения, и наоборот. Энергия, следовательно, может перераспределяться, переходить в другую форму или претерпевать оба этих превращения, но она не может исчезать. [c.373]

    Чтобы уяснить смысл этих явлений и значение данных, полученных из количественного изучения этих явлений, необходимо рассмотреть основные термодинамические соотношения между силой, длиной и температурой, с одной стороны, и термодинамическими величинами, внутренней энергией и энтропией, с другой стороны. Основные соотношения, которые нам нужны, прямо следуют из законов термодинамики. Первый закон дает нам определение внутренней энергии, а именно  [c.25]

    Первый закон термодинамики утверждает, что при превращении одной формы энергии в другую полная энергия сохраняется, однако никаких других ограничений относительно возможности этого процесса не указывает. Было найДено, что в то время, как различные типы работы могут быть полностью превращены в теплоту и в идеальном случае могут быть полностью преобразованы из одного вида в другой, только некоторая часть теплоты может превратиться в работу в циклическом процессе. Второй закон термодинамики дает возможность рассчитать максимальное значение, которого может достигнуть эта часть. Этот закон также непосредственно связан с вопросом о том, является ли данный процесс самопроизвольным или нет. Так как второй закон дает критерий для оценки того, окажется ли процесс самопроизвольным, он имеет большое значение для химии. [c.99]

    Вечный двигатель и второй закон термодинамики. Первый закон термодинамики отвергает возможность существования машины, которая могла бы создавать энергию. Второй закон отвергает возможность создания машины, которая могла бы превращать теплоту внешней среды в работу т о л ь к о за счет охлаждения ею окружающей среды. [c.101]

    Первый закон термодинамики был сформулирован как невозможность построить машину, которая могла бы создавать энергию. Однако он не накладывает ограничений на превращение энергии из одного вида в другой. Таким образом, на основе одного лишь первого закона всегда имеется возможность превратить теплоту в работу или работу в теплоту, если только общее количество теплоты эквивалентно общему количеству работы. Это, безусловно, верно для превращения работы в теплоту. Тело (безразлично с какой температурой) всегда можно нагреть трением, получая количество энергии в форме тепла, точно равное проделанной работе. Подобным же образом электрическая энергия всегда может быть превращена в теплоту при прохождении электрического тока через сопротивление. Однако существуют определенные ограничения при превращении теплоты в работу. Если бы этого не было, то можно было бы построить машину, которая смогла бы путем охлаждения окружающих тел превращать взятую из окружающей среды теплоту в работу. [c.37]

    Закон сохранения импульса (количества движения) является общим выражением первого закона термодинамики [уравнение (1.10)] для контрольного объема (см. рис. 1-1). Импульс по определению равен произведению массы выделенного элемента жидкости т на вектор скорости его движения следовательно, импульс т -тоже вектор. Поэтому закон сохранения импульса можно представить и в векторной форме, и в скалярной-в виде трех скалярных уравнений в направлениях осей координат х, у, г. [c.24]

    Закон со.хранения энергии называют также первым законом термодинамики. [c.159]

    Исследование работы ректификационной колонны, при условии принятия гипотезы идеальной тарелки, основывается на использовании трех фундаментальных законов, а именно, сохранения вещества, сохранения энергии и, наконец, второго закона термодинамики. Применение первых двух законов находит свое практическое выражение в составлении основанных на них уравнений материального и теплового баланса. Второй же закон термодинамики является той основой, которая используется при выводе равновесных соотношений фазового сосуществования парожидких систем, устанавливающих предельные глубины процессов массообмена и энергообмена взаимодействующих неравновесных фаз. [c.68]

    Формулировки первого закона термодинамики. Внутренняя энергия и энтальпия. В 1840—1849 гг. Джоуль впервые с помощью разнообразных и точных опытов установил эквивалентность механической работы и теплоты A/Q = J, где J — механический эквивалент теплоты — постоянная, не зависящая от способа и вида устройств для превращения работы А в теплоту Q . В дальнейшем было доказано постоянство отношений других видов работы к теплоте, введено обобщающее понятие энергии и сформулирован закон сохранения и эквивалентности энергии при всевозможных взаимных превращгниях различных видов энергии переход одного вида энергии в другой совершается в строго эквивалентных количествах в изолированной системе сумма энергий есть величина постоянная. Первый закон термодинамики является законом сохранения энергии в применении к процессам, которые сопровождаются выделением, поглощением или преобразованием теплоты в работу. В химической термодинамике действие 1-го закона распространяется на ту универсальную форму энергии, которая называется внутренней энергией.- [c.73]

    Создание нового производства или процесса получения нового вещества прежде всего требует выяснения возможности протекания химических реакций, которые при этом предполагается осуществлять. Первый закон термодинамики оказывается недостаточным для решения подобных задач, В пределах этого закона возможно составление энергетических балансов тепловых процессов, но не рассмотрение вопроса о направлении, в котором они могут проходить, В некоторых случаях первый закон термодинамики позволяет предвидеть возможность тех или иных процессов. Например, температура изолированного тела не может сама собой увеличиваться. Невозможен вечный двигатель, т. е. машина, производящая работу без затраты энергии (вечный двигатель первого рода), что также является примером процессов, запрещаемых первым законом. Однако в природе есть такие процессы, которые, хотя и не противоречат первому закону, все же в действительности не осуществляются, Так, тело не может приобрести поступательного движения за счет убыли своей внутренней энергии (охлаждения), хотя при этом соблюдался бы энергетический баланс, Не было бы противоречия с первым законом и в том случае, если бы тепло самопроизвольно переходило от холодного тела к горячему. Однако факты показывают, что все действительно происходящие в природе процессы отличаются определенной направленностью. Они совершаются сами собой только в одном направлении, хотя первый закон не запрещает их протекания в обратном направлении. Например, в нагретом с одного конца металлическом стержне происходит выравнивание температуры и установление теплового равновесия. Чтобы понять общность этого закона, достаточно вспомнить о таких процессах, как взрывы, взаимная диффузия двух газов или жидкостей с образованием раствора. После окончания таких процессов изолированная система уже не может сама собой вернуться в какое-либо из своих предыдущих состояний. Образовавшийся раствор не может сам разделиться на составляющие его компоненты, а продукты взрыва не могут сами вновь образовать исходные вещества. Можно сделать общий вывод в -иптемах, предоставленных самим себе, все процессы текут односторонне, т, е, в одном направлении, и достигают [c.36]

    В основе Т. X. лежат общие положения и выводы термодинамики. Первый закон тер.иодинамики слу-ишт основой термохимии, и основной закон термохимии — Гесса закон — является важнейшим его следствием. Предметом термохимии служит изучение теплоемкостей различных веществ и тепловых эффектов химич. реакций и различных физико-химнч. процессов. Закон Гесса дает возможность определять тепловые эффекты расчетным путем, не прибегая к дорогостоящим и не всегда доступным экспериментальным опродолоииям. При таких расчетах большую роль играют теплоты образования рассматриваемых веществ, т. к., зная теплоту образования каждого из веществ, участвующих в данной реакции, легко рассчитать ее тепловой эффект. Для органич. реакции подобную же роль играют и теплоты сгорания. Современные справочные издаппя содерн ат данные [c.48]

    Термодинамики первый закон 871 Тертодинамические изотопные эффекты [c.541]

    В конце XVIП в. было установлено, что количество тепла, выделяющееся при образовании химического соединения, в точности равно теплу, которое необходимо затратить для разложения данного соединения. Это является прямым следствием первого закона термодинамики (правда, в то время этот закон еще не был известен). Если бы при проведении реакции образования соединения, а затем его разложения, тепло либо возникало, либо исчезало, то это противоречило бы закону сохранения энергии, так как в результате цикла с веществами не произошло никаких изменений. [c.36]

    Химическая термодинамика базируется на двух основных законах, называемых также перввш и вторым началами термодинамики. Первый закон термодинамики обычно известен как закон сохранения энергии. Первый закон термодинамики не может быть выведен математически, его содержание вытекает из обобщения многолетнего опыта человечества. Первые идеи о законе сохранения материи и ее движения были высказаны в 1748 г. Ломоносовым. Уже тогда он считал, что причиной теплоты является движение молекул вещества. Идеи Ломоносова получили подтверждение в работах Майера, Гельмгольца и Джоуля, которые установили, что теплота и работа являются энергетически эквивалентными эффектами, свидетельствующими об изменении внутренней энергии системы. [c.118]

    Для жпдкофазных реакций условия постоянства объема и давления выполняются одновременно для газовых реакций, проводимых нри постоянном объеме, уравнения надо записать несколько иначе, но практически это различие незначительно В этом случае ири выводе уравнения для температуры следовало бы составить баланс внутренней энергии, использовав первый закон термодинамики, и получить, как и в разделе П1.2, уравнение  [c.308]


Смотреть страницы где упоминается термин Термодинамика, первый закон для закона: [c.417]    [c.47]    [c.128]    [c.23]    [c.136]   
Термохимические расчеты (1950) -- [ c.148 ]




ПОИСК





Смотрите так же термины и статьи:

Закон первый

Закон термодинамики

Закон термодинамики первый

Термодинамики первый



© 2024 chem21.info Реклама на сайте