Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массопередача при наличии химической реакции

    Здесь Ф - фактор ускорения, определяемый отношением потока вещества при наличии химической реакции к величине диффузионного потока при отсутствии химической реакции M=k D к , - начальная концентрация хемосорбента к - коэффициент массопередачи в фазе, где протекает химическая реакция  [c.270]

    Этот факт получил объяснение в работах Крылова [49, 50]. Границы применимости пенетрационной модели рассматривались в работах [51—53]. Очевидно, что пенетрационная модель справедлива только в тех случаях, когда время контакта фаз мало по сравнению с характерным временем релаксации диффузионного процесса, т. е. с временем установления стационарного диффузионного потока при данном значении движущей силы процесса. Наличие химической реакции в объеме сплошной фазы существенно сказывается не только на скорости массопередачи, но и на времени релаксации процесса. Крылов [50] решил задачу о нестационарной диффузии в системе с химической реакцией в рамках приближения диффузионного пограничного слоя и установил границы применимости пенетрационной модели для решения подобных задач. Было показано, что для [c.233]


    МАССОПЕРЕДАЧА ПРИ НАЛИЧИИ ХИМИЧЕСКОЙ РЕАКЦИИ [c.154]

    Поскольку в аппаратах с твердым катализатором реакция идет на поверхности последнего, то перенос массы на границе фаз протекает в отсутствие химической реакции. Поэтому для определения значений коэффициентов межфазного переноса в аппаратах с суспендированным катализатором, где велика доля жидкой фазы, инертной в отношении химической реакции, можно пользоваться формулами, принятыми для расчета чисто массообменных аппаратов, например из [5]. Для неподвижного слоя катализатора за неимением более точных и обоснованных выражений в первом приближении, видимо, можно использовать формулу (7) для расчета коэффициентов межфазного переноса при наличии химической реакции. Тогда будут получены нижние значения коэффициентов массопередачи, поскольку здесь не учитывается увеличение градиента концентраций между жидкостью и газом, получаемое за счет протекания химической реакции на катализаторе, объем которого сравним с объемом жидкой фазы. [c.82]

    Анализ данного уравнения показывает, что коэффициент массопередачи для инжекционного аппарата, отнесенный к единице его объема, значительно больше, чем для насадочного аппарата, вследствие уменьшения абсорбционного сопротивления паровой фазы. Абсорбционное сопротивление паровой фазы составляет в этом случае 46—68% от общего сопротивления абсорбции (при наличии химической реакции). Следовательно, применение инжекционного аппарата для абсорбции фенолов из пара растворами щелочи оправдывает себя. [c.18]

    Массопередача при протекании химической реакции в жидкости как правило ускоряется. Проиллюстрировать причину этого ускорения проще всего в рамках пленочной модели. На рис. 19,2, а показаны два профиля концентрации поглощаемого вещества в пограничном слое жидкости у границы с газом (газ — слева). Как в отсутствие реакции, так и при ее протекании приняты одни и те же значения концентрации поглощаемого компонента в массе жидкости Ся и на границе раздела фаз Сп. При поглощении без реакции, т. е. при физической абсорбции (кривая 1), концентрация изменяется прямолинейно в соответствии с уравнением (15.19)—см. рис. 15.6. Наличие химической реакции приведет к тому, что поглощаемый компонент будет вступать в реакцию в пограничном слое. Теперь уже падение концентрации вызывается не только переносом, но и реакцией. Поэтому профиль концентрации искривляется (см. рис. 19, а, кривая 2). Это приводит к увеличению градиента концентрации у границы раздела фаз и соответственно — к росту скорости переноса. [c.219]


    Процесс массопередачи может происходить как при отсутствии, так и при наличии химической реакции, протекающей [c.75]

    Массопередача при наличии химической реакции. Протекание химической реакции в двухфазной системе оказывает влияние на установление равновесия и распределение компонента между фазами, а следовательно, и на движущую силу процесса. Кроме того, химическая реакция существенно влияет на величину коэффициента массопередачи. Протекание химической реакции изменяет также поле концентраций в объеме аппарата. [c.81]

    Может ли наличие химической реакции ускорить процесс массопередачи и наоборот Почему  [c.209]

    Пленочная модель дает неплохие результаты при расчете скорости массопередачи при наличии химической реакции, если определять толщину пленки 6 при тех же условиях, но в отсутствии реакции. Модель пригодна для оценки влияния скорости массопередачи на теплопередачу. [c.356]

Рис. VII-5. К расчету процесса массопередачи при наличии быстрой химической реакции. Рис. VII-5. К <a href="/info/332598">расчету процесса массопередачи</a> при наличии <a href="/info/30053">быстрой химической</a> реакции.
    В предыдущем разделе было показано, что термическая устойчивость ДЖР характеризуется соотношением скоростей химической реакции, тепло- и массопередачи. Действительно, кривые, приведенные на рис. 9.2 и 9.4, показывают, что в большинстве случаев реактор термически устойчив уже при у 0,9, т. е. наличие сравнительно небольшого диффузионного сопротивления часто обеспечивает термическую устойчивость реактора. Однако температурная зависимость скорости процесса определяется не только изменением скорости химической реакции. [c.178]

    Кинетика ионного обмена в неподвижном слое адсорбента, как и в случае адсорбции, может быть описана основным уравнением массопередачи (20.20). Отличительной особенностью кинетики ионного обмена является наличие стадии гетерогенной химической реакции, скорость которой обычно выше скорости диффузионных стадий процесса. Кроме того, следует учесть, что при ионном обмене скорость массопередачи часто лимитируется внутренним массопереносом. [c.212]

    Поверхностные явления при массопередаче связаны с различного рода нарушениями поверхности контакта фаз, с предварительной адсорбцией или хемосорбцией компонента на поверхности контакта, приводящей к изменению общего сопротивления массопередачи [74]. К поверхностным явлениям относятся межфазовая-турбулентность (гидродинамическая неустойчивость поверхности контакта фаз) и межфазовый (энергетический) барьер переходу вещества через границу раздела фаз при медленной химической реакции или наличии поверхностно-активного вещества (ПАВ) в жидкости..  [c.105]

    Необходимо отметить следующие два обстоятельства. Во-первых, нужно помнить, что решения (5.43), (5.44) и (5.47), (5.48) системы уравнений (5.38) справедливы только при различных и вещественных корнях характеристического уравнения (5.42). Если это условие не соблюдается, то целесообразно рассмотреть аналогичное решение дифференциальных уравнений массопередачи с началом координат у бедного конца потока, которое в этих случаях может давать вещественные значения корней характеристического уравнения. Во-вторых, следует обратить внимание на общий характер рассмотренных преобразований дифференциальных уравнений, позволяющий рассчитывать на основе диффузионной модели достаточно просто также эффективность массопередачи при наличии застойных зон в аппарате или при одновременно протекающей химической реакции [9]. [c.200]

    Знак перед г и, следовательно, эффект химической реакции зависят от того, привадит последняя к рождению или исчезновению диффундирующего вещества . Массопередача ускоряется при наличии химического источника в исчерпываемой фазе и химического стока в извлекающей, так как при этом увеличиваются градиенты концентраций в каждой из фаз. Фактор ускорения (отношение коэффициента массоотдачи с химической реакцией к коэффициенту массоотдачи при отсутствии реакции) зависит от типа реакции и от ее скорости. С увеличением последней возрастает, приобретая для мгновенных необратимых реакций предельное значение, равное Е . [c.164]

    В связи с тем, что в ряде работ различие коэффициентов массопередачи при экстракции в прямом и обратном направлениях связывают с существованием поверхностного сопротивления, нами была уточнена формула Пратта [4] и показано, что наличие обратимых химических реакций на границе раздела фаз не приводит к изменению коэффициента массопередачи при изменении направления процесса. [c.49]


    Экспериментальное определение скорости массопередачи при наличии быстропротекающей химической реакции в сплошной фазе проводили следующим образом. [c.87]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Дэвис применил подобные колонны для системы водный раствор азотной кислоты — уран — раствор трибутилфосфата в керосине. Его полуэмпирическое уравнение для ВЭТС, полученное на данной системе, по-видимому, нельзя распространить на другие системы в связи с тем, что испытанная система обладает необычно высоким сопротивлением массопередаче (вероятно, вследствие наличия химической реакции, см. главу X). На колоннах малых размеров можно получить значения ВЭТС порядка 65 мм на лабораторных колоннах очень малых размеров достигализначений ВЭТС, равных 20 мм. [c.576]

    Здесь Ф — фактор ускорения, определяемый отношением потока вещества при наличии химической реакции к величине диффузионного потока при отсутствии химической реакции М = s=k2 2oDi K-, С20 — начальная концентрация хемосорбента к—. коэффициент массопередачи в фазе, где протекает химическая реакция Ф , — асимптотическое значение величины Ф, соответствующее мгновенной химической реакции., [c.127]

    Массопередача, осложненная химической реакцией, рассматривалась в основном для плоской границы раздела фаз. В работе [29] проведен расчет и сопоставление с экспериментом для сферической капли в случае быстропротекаюш ей необратимой химической реакции в сплошной фазе при наличии противотока. [c.143]

    Уравнение (1-175) показывает, что количество вещества , поглощенное из газовой фазы в результате химической реакции с веществом А, находящимся в жидкой фазе, может быть рассчитано аналогично физической абсорбции, если эффективным коэффициентом массопередачи считать произведение критерия Хатта на коэффициент массопередачи ру,1 в жидкой фазе. Роль движущей силы играет в этом случае выражение в квадратных скобках уравнения (1-175). Критерий На больше или равен 1 и растет с увеличением соотношения к10т,. Таким образом, он является мерой ускорения процесса массопередачи при наличии химической реакции по сравнению с физической диффузией. [c.207]

    Задача массообмена движущейся сферической капли при наличии химической реакции второго порядка, протекающей внутри капли, когда сопротивление массопередаче сосредоточено в диспергированной фазе и сопротивление обеих фаз соизмеримо, а числа Ре и К весьма велики, впервые была рассмотрена Б. И. Броунштейном с соавторами в работе [1]. Цель настоящей работы — экспериментальная проверка применимости полученных уравнений. Подбор систем для экспериментальной проверки расчетных формул связан с определенными трудностями, так как к этим системам предъявляются следующие требования 1) хемосорбент должен хорошо растворяться в диспергированной фазе и быть практически нерастворимым в плou нoй фазе 2) коэффициент распределения эстрагируемого компонента должен равняться 10 (для лимитирующего сопротивления диспергированной фазы) 3) реакция между экстрактпвом и хемосорбентом должна иметь первый порядок по каждому из комгюнентов и скорость ее должна значительно превышать скорость диффузии 4) необходимо знать коэффициенты диффузии экстрактива и хемосорбента. [c.22]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    Ускоряющее влияние реакций связывания переносимого компонента в извлекающей фазе на кинетику его массопередачи вначале было доказано исследованиями в области хемосорбции труднорастворимых газов [2—4]. Разработанные при этом теории в дальнейшем без существенных изменений были перенесены на процессы экстракции с химическими реакциями [6, 117, 118, 152, 153]. В частности. Шарма [118], используя теорию хемосорбции Данквертса [156 — 158], обсудил влияние необратимой реакции второго порядка в извлекающей фазе на скорость массопередачи вещества при экстракции. Еще раньше Раал и Джонсон [152] вывели уравнение скоростп экстракции при наличии обратимой реакции димеризации экстрагируемого вещества в органической фазе, а Оландер учел обратимые реакции сольватации [151 ] и димеризации [153]. [c.381]

    В отсутствие химической реакции толщина диффузионных слоев зависит от гидродинамической обстановки и физических свойств жидкости, наиболее важными из которых являются вязкость н коэффициент молекулярной диффузии. Однако при наличии реакции эффективная толщина слоя со стороны реакционной фазы начинает уменьшаться, если реакция успевает протекать в значительной степени внутри диффузионного слоя. Уменьшение эффективной толщины диффузионного слоя равносильно увеличению градиента концентрации или коэффициента массопередачи. Можно сказать, что любая реакция, способствующая повышению градиента концентрации диффундирующего компонента, будет ускорять его массопередачу, и наоборот. В соответствии с этим при обратимой реакции роль прямой и обратной химических стадий будет противоположна [154, 155]. Образование переносимого компонента в исчерпываемой фазе ускоряет массонередачу. Если же оно происходит в извлекающей фазе, массопередача замедляется. При обратимой реакции ускоренне тем значительней, чем меньше она отклоняется процессом массопередачи от состояния равновесия [154]. [c.382]

    В работе [136] дополнительное ускорение массопередачи при протекании в жидкости химической реакции связывается не с действием капиллярных сил, а с наличием стефановского потока. Анализ массопередачи с мгновенной химической реакцией (при значениях коэффициента ускорения массопередачи 10 ) проведен для пленочной модели с учетом конвективного переноса в поперечном направлении. Показано, что значения коэффициента ускорения массопередачи могут повышаться (особенно при высоких концентрациях реагентов) и понижаться (в зависимости от стехиометрии реакции). Выводы указанной работы не представляются достаточно убедительными. В частности, они не могут объяснить существенное различие скоростей массопередачи для систем СО2 — МЭА и СО2 — NaOH при сопоставимых условиях, хотя константы скорости химических реакций в этих системах близки между собой. [c.101]

    Абсорбция, сопровождающаяся химической реакцией. При наличии в жидкой фазе быстрой необратимой химической реакции скорость абсорбции определяется только сопротивлением массопередаче в газовой фазе. В этом случае скорость массопередачи можно установить, используя метод определения Яг. Примером может служить абсорбция NH3 раствором кислоты, SO2 раствором щелочи, H2S из разбавленного газа крепким раствором щелочи (пока растворенный в жидкости реагент быстро связывает растворенный газ). Расчет высоты колонны становится относительно простым, так как равновесное противодавление газа над раствором равно нулю. Даже" если реакция достаточно обратима, чтобы обеспечить небольшое противодавление, абсорбция может определяться сопротивлением газовой фазы и величина Яг, которая применима для случая физической абсорбции, Цррделяет скорость процесса. [c.422]

    Трудно объяснить наличие поверхностного сопротивления как следствие химической реакции при переходе уксусной кислоты (а также других органических кислот) из водной фазы в органический растворитель [14, 15]. В этом случае массопередача замедляется реакцией ассоциации кислоты, так как переход в органическую фазу возможен лишь для электроней-тральных молекул кислоты. Однако константа диссоциации уксусной кислоты равна 1,7-Ю , и наличие столь ничтожного количества диссоциированных молекул не может отразиться на скорости процесса [27]. Отметим, что скорость ассоциации ионов Н+ и СНзСОО" равна 4,5-10 ° л моль-сек) [28], что значительно превосходит скорость диффузионного процесса. По тем же причинам трудно предположить влияние химической реакции на скорость процесса массопередачи при экстракции бензойной кислоты из бензола водой. [c.55]


Смотреть страницы где упоминается термин Массопередача при наличии химической реакции: [c.297]    [c.228]    [c.260]    [c.588]    [c.297]    [c.150]    [c.259]    [c.227]    [c.15]    [c.278]    [c.760]    [c.56]    [c.434]    [c.628]   
Смотреть главы в:

Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 -> Массопередача при наличии химической реакции

Введение в теорию и расчеты химических и нефтехимических реакторов -> Массопередача при наличии химической реакции


Жидкостные экстракторы (1982) -- [ c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Массопередача

Массопередача массопередачи



© 2025 chem21.info Реклама на сайте