Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фрумкин метод

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]


    Л. Я. Поляк и Б. Н. Кабанов изучили скорости процессов, протекающих при потенциометрическом титровании. Многие химические реакции вследствие медленного их протекания не используются в потенциометрии. В этих условиях медленно устанавливается электродный потенциал. Были найдены условия, ускоряющие эти процессы, например, для системы [Ре (СК)е] //[Ре (СМ)б1 при титровании ряда металлов, образующих труднорастворимые ферроцианиды. Для решения этого вопроса был использован метод А. Н. Фрумкина — метод снятия кривых поляризации электродов для изучения кинетики установления потенциалов на индикаторных электродах и изменения потенциалов во времени. Установлено, что при потенциометрическом титровании цинка, кадмия и других металлов ферроцианидом ионы металлов не участвуют в процессе установления потенциала платинового электрода. Для облегчения установления потенциала при титровании цинка или кадмия ферроцианидом в раствор всегда необходимо вводить некоторое количество ферроцианида в виде Кз[Ре (СЫ)б1. Поэтому, хотя в растворе идет осаждение катионов металла ферроцианидом, на самом деле на индикаторном электроде регистрируется типичная окислительно-восстанови-тельная реакция, равновесный потенциал которой определяется по уравнению Нернста  [c.608]

    Теоретический расчет пулевых гочек осложняется тем, что существующее их определение является чисто описательным, феноменологическим и не вскрывает их физическую сущность. Все предложенные до сих пор методы расчета нулевых точек поэтому приближенны и основаны на более или менее обоснованных предположениях. Первое предположение было высказано Фрумкиным оно отвечает данному им решению проблемы Вольта. По Фрумкину, разность нулевых точек двух металлов приблизительно равна вольта-потенциалу между ними  [c.255]

    Применение теории Фрумкина — Дерягина долгое время сдерживалось недостаточной изученностью изотерм П(/1). В настоящее время достигнут значительный прогресс как в экспериментальном изучении изотерм расклинивающего давления смачивающих пленок [45], так и в развитии методов теоретического расчета различных составляющих расклинивающего давления, действующих в этих пленках [42]. [c.211]

    Значительный вклад в развитие электрохимии внесли также русские ученые. В. В. Петров (1761—1834) изучал электропроводность растворов, химические действия электрического тока, электрические явления в газах и т. п. С помощью созданного им крупнейшего для того времени химического источника тока в 1802 г. он открыл электрическую дугу. Б. С. Якоби (1801—1874) в 1834 г. изобрел электродвигатель, работавший на токе от химического источника. В 1838 г. он предложил гальванопластический метод (см. разд. У.П). П. Н. Яблочков (1848—1914) изобрел электродуговую лампу (1875 г., свеча Яблочкова ), работал над созданием химических источников тока, выдвинул (1877 г.) идею создания топливного элемента (см. разд. А.12). Н. А. Изгарышев (1884—1956) развил теорию химического источника тока, работал над проблемой защиты металлов от коррозии, открыл явление пассивности металлов в неводных растворах электролитов, и по праву считается одним из основателей электрохимии неводных растворов. А. Н. Фрумкин (1895—1971) разрабатывал вопросы кинетики электрохимических процессов, развил теорию строения двойного электрического слоя. [c.233]


    Б. Б. Эршлером и А. Н. Фрумкиным. Эта работа, а также работа В. А. Ройтера, В. А. Юза и Е. С. Полу ян (1939), в которой были определены скорости анодного растворения и катодного осаждения ряда металлов при помощи гальваностатических импульсов, представляют интерес как примеры первых количественных исследований кинетики электродных процессов нестационарными методами. В настоящее время нестационарные методы исследования получили чрезвычайно широкое развитие в электрохимической кинетике. Большое значение для электрохимической кинетики имели открытие и разработка Я. Гейровским (1922—1925) полярографического метода, при помощи которого были изучены многие электродные процессы. [c.11]

    Минимум емкости в разбавленных растворах строго соответствует п. н. 3. лишь для симметричного поверхностно-неактивного электролита. Характерной особенностью этого минимума является его исчезновение с увеличением концентрации раствора. Определение потенциала минимума на С, -кривых в разбавленных растворах лежит в основе прецизионного метода определения п. н. з. ряда твердых электродов (метод Фрумкина — Ворсиной). Потенциалы нулевого заряда различных металлов в водных растворах поверхностно-неактивных электролитов представлены в табл. 1. [c.56]

    Таким образом, рассмотрение формы и взаимного расположения кривых заряжения позволяет сделать ряд важных качественных выводов о строении границы электрод — раствор в условиях, когда на поверхности электрода происходит адсорбция атомов водорода и кислорода. Чтобы на основе этого метода сделать количественные выводы о структуре поверхностного слоя платиновых металлов, необходимо использовать термодинамическую теорию водородного электрода, развитую в последние годы в работах А. Н. Фрумкина, О. А. Петрия и сотр. [c.71]

    Формула (48.9), выведенная П. И. Долиным, Б. В. Эршлером и А. И. Фрумкиным, лежит в основе импедансного метода определения тока обмена. Однако в реальных условиях при Ф = Фр всегда тот или. иной вклад в измеряемый импеданс вносит диффузия электроактивных веществ О и К. [c.259]

    Для количественного сопоставления опытных данных с теорией по формуле (52.3) рассчитывают ток разряда I в области минимума поляризационной кривой. Важным этапом этого сопоставления является определение заряда реагирующей частицы го по методу, предложенному А. Н. Фрумкиным и О. А. Петрием. [c.284]

    Все величины в правой части уравнения (П.15) доступны экспериментальному определению, и это открывает путь для расчета реальной энергии сольватации отдельного вида ионов. Идея этого метода нахождения ДО Р -" была выдвинута А. Н. Фрумкиным. Ниже приведены величины для некоторых ионов, рассчитанные по наиболее [c.25]

    Итак, метод измерения емкости двойного слоя позволяет определить потенциал нулевого заряда, зависимость заряда электрода от его потенциала, с точностью до константы рассчитать серию а, -кривых и определить поверхностную концентрацию специфически адсорбированных ионов и органических молекул. Разработка и экспериментальная проверка метода измерения емкости проводились на ртутном электроде (А. И. Фрумкин и сотрудники, Д. Грэм). В дальнейшем этот метод был широко использован для изучения двойного электрического слоя на электродах из висмута, свинца, галлия, индия, сурьмы, олова, таллия, цинка, серебра, меди, золота и некоторых других металлов. [c.158]

    Как следует из уравнения (3.14), для электродов, обратимо адсорбирующих водород, следует различать понятия потенциал нулевого свободного заряда о и потенциал нулевого полного заряда ( 0. Методы определения этих величин, а также зависимостей д и Q от Ег, разработанные А. Н. Фрумкиным и [c.139]

    Согласно основному уравнению электрокапиллярности (3,1) образование двойного электрического слоя на межфазной границе электрод/раствор приводит к уменьшению величины а. Этот эффект, обусловленный электростатическим отталкиванием одноименных зарядов, предопределяет характерную форму электрокапиллярной кривой (в виде перевернутой параболы). В соответствии с уравнением Липпмана (3.3) наклон электрокапиллярной кривой равен плотности зарядов <7 на поверхности электрода. В максимуме электрокапиллярной кривой да/дЕ О и д О, а потому потенциал электрокапиллярного максимума называют потенциалом нулевого заряда. Впервые это понятие было введено Фрумкиным в 1927 г. Для нахождения потенциала максимума электрокапиллярной кривой используется метод Оствальда — Пашена. Он состоит в том, что электрокапиллярную кривую пересекают рядом хорд, параллельных оси абсцисс, затем находят их середины и экстраполируют линию, соединяющую эти точки, до пересечения с электрокапиллярной кривой (рис. 3.8). [c.148]

    Достижения в развитии теории адсорбции органических соединений на электродах и успехи в разработке методов исследования и теории многостадийных процессов все шире применяются при подборе новых добавок для процессов электрокристаллизации, ингибиторов коррозии, при выяснении механизма электрохимических превращений органических веществ и создании новых процессов электросинтеза. В 1971 г. академик А. Н. Фрумкин охарактеризовал электросинтез органических соединений как однО из направлений, стоящих накануне нового подъема и подчеркнул, что на этом направлении дальнейшие успехи возможны только на основе всестороннего использования современных достижений теории . Развитие электрохимии органических соединений в последние годы полностью подтверждает эти слова. [c.304]


    Каким образом могут быть определены нулевая концентрация и потенциал нулевого заряда А. Н. Фрумкин предложил два метода решения этой задачи. [c.191]

    Потенциалы металлов в нулевых растворах по отношению к стандартному электроду, так называемые потенциалы нулевого заряда, или нулевые точки металлов, по Фрумкину, могут быть измерены разными методами, которые основаны на наблюдении за зависимостью адсорбционных явлений от заряда поверхности. [c.388]

    Значительный вклад в развитие теории водородного перенапряжения и экспериментальных методов его исследования внесла советская школа электрохимиков во главе с А. Н. Фрумкиным. [c.268]

    Кроме того, с помощью электрокапиллярных исследований и другими методами А. Н. Фрумкин показал недостаточность представления Нернста о том, что скачок потенциала целиком локализован на границе фаз электрод — электролит. [c.219]

    Впервые переменный ток для исследования электродных процессов был применен А. Н. Соколовым в 1887 г. Затем аналогичная методика была использована Лебланом и Шиком при исследовании закономерностей электроосаждения металлов. Детальная разработка метода была осуществлена А. Н. Фрумкиным, Б. В. Эршлером и П. И. Долиным, которые показали, что при наложении переменного тока в течение коротких отрезков времени фронт диффузии не успевает отойти от поверхности электрода на значительное расстояние. Это позволяет пропустить через ячейку гораздо большие токи по сравнению со стационарными условиями при обычных режимах размешивания. [c.262]

    Приведенные данные показывают, что несмотря на такое раз.личие вг> всех трех случаях результаты опыта могут быть с достаточной полпото1[ объяснены на основании небольпюго числа донуиюний. Все эти допущения, как правило, достаточно обоснованы и хюдтверждаются независимыми опытными данными. Значительный успех может быть, в частности, достигнут распространением на другие реакции предложенного Л. П. Фрумкиным метода учета влияния структуры двойного слоя па кинетику электрохимических реакций. [c.70]

    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    В разработке современной теории строения двойного электрического слоя на границе твердая фаза — жидкость и методов его исследования ведущая роль принадлежит А. Н. Фрумкину и его школе. Работы А. Н. Фрумкина и его учеников установили, что слой ионов, располагающийся в нсидкости, благодаря действию двух противоположно направленных сил (электростатического притяжения и теплового движения) имеет диффузное строение, т. е. он проникает в жидкость на некоторую глубину (рис. 55). [c.224]

    Метод расчета этой слагающей впервые был разработан и применен Б. В. Дерягиным и далее усовершенствован совместно с Л. Д. Ландау. Позднее аналогичные расчеты были опубликованы Ленгмюром, А. Н. Фрумкиным, Бергманом, Лов — Беером и Цохе-ром. Изложим принципы этих расчетов для более простого случая, когда потенциал фо, до которого заряжены поверхности взаимодействующих фаз, мал. [c.273]

    Рассмотренная картина значительно усложняется, когда частицы способны избирательно адсорбировать ионы какого-нибудь определенного вида, иными словами, когда проявляется действие адсорбционного потенциала. Кроме того, на межфазной границе обычно существует скачок потенциала. А. Н. Фрумкин показал, что на межфазной границе аэрозолей воды или снега благодаря большому. .дипольному моменту молекул Н2О и их ориентации сушествует положительный электрический потенциал порядка 250 мВ Скачок потенциала на межфазной границе может возникать и вследствие так называемой баллоэлектрнзании — электризации частиц аэрозоля при получении его методом диспергирования. [c.346]

    Второй метод, предложенный Фрумкиным и независимо Ж. Гюйо, основан на ионизации воздуха над поверхностью раствора при помощи радиоактивного вещества. Этот метод называется методом радиоактивного зонда. В этом методе над раствором помещается металлическая пластинка (зонд), на нижнюю поверхность которой наносится радиоактивное вещество, являющееся источником а-излучения (рис. 47). При прохождении излучения через воздушный зазор воздух в нем ионизируется и становится проводником. В результате этого исчезает электростатическая разность потенциалов Ат)). Если зонд помещен над эталонным раствором, то измеряемая при [c.90]

    Так возникло представление об элементарном акте электродного процесса. Непосредственное определение скорости реакции разряда ионов гидроксония с образованием адсорбированного атома водорода было проведено переменноточным методом в 1940 г. П. И. Долиным, Б. В, Эршлером и А. Н. Фрумкиным. Эта работа, а также работа В. А. Ройтера, В. А. Юзы и Е. С. Полуяна (1939 г.), в которой были определены скорости анодного растворения и катодного осаждения ряда металлов при помощи гальваностатических импульсов, представляют интерес как примеры первых количественных исследований кинетики электродных процессов нестационарными методами. В настоящее время нестационарные методы исследования получили чрезвычайно широкое развитие в электрохимической кинетике. Большое значение для электрохимической кинетики имело открытие и разработка Я. Гейровским (1922—1925 гг.) полярографического метода, при помощи которого были изучены многие электродные процессы. [c.12]

    В 1940—1947 гг. П. И. Долиным, Б. В. Эршлером и А. Н. Фрумкиным в Советском Союзе и независимо Дж. Рэндлсом в Англии был разработан метод разделения С од на Сди на Метод основывался на предположении, что емкость двойного слоя и псевдоемкость реакции независимы, т. е. фарадеевский процесс не изменяет емкости двойного слоя. В течение 20 лет эта точка зрения была обш,епризнан-ной, и лишь в 1966—1967 гг. П. Делахей показал, что такое предположение в общем случае неправильно. [c.56]

    Определение зависимости свободного заряда поверхности платинированной платины от потенциала методом адсорбционных кривых. Методы кривых заряжения и потенциодинамических кривых позволяют найти зависимость полного заряда поверхности Q (точнее, ДQ ) от потенциала электрода. Для определения зависимости свободного заряда от потенциала используют метод адсорбцион ных кривых, который был предложен Л. Н Фрумкиным, А. И. Шлыгиным и В. М. Медве довским. Метод основан на регистрации изме нения концентрации водородных (или гидро ксильных) ионов, т. е. гиббсовской адсорбции ионов водорода при об [c.206]

    Пособие, написанное учениками основоположника современной пюретическон электрохимии академика А, Н, Фрумкина, посвящено наложению теоретических основ электродных процессов в растворах органических веществ. Актуальность рассматриваемых проблем С1 язана с широким применением органических соединений в прикладной электрохимии для регулирования свойств электролитических покрытий и ингибирования коррозии, в органическом электросинтезе, в топливных элементах и химических источниках тока, В книге изложены методы изучения адсорбции органических соедпненггй и закономерности обратимой и необратимой адсорбции на электродах, влияние обратимой адсорбции на две стадии электродного процесса — массопереноса и разряда — ионизации, закономерности электрохимических реакций с участием органических соединений. [c.2]

    Величина а может быть экспериментально получена только на жидких электродах. Это обстоятельство ограничивает применимость электрокапиллярного метода для изучения адсорбции органических веществ из их водных растворов электродами из ртути, галлия, а также из некоторых сплавов на основе этих металлов (амальгам и галлам). Тем не менее ртутный электрод является идеальным с точки зрения теории адсорбции органических соединений на электродах он имеет идеально гладкую и энергетически однородную поверхность, которая легко обновляется, а сама ртуть сравнительно просто очищается от различных примесей. Фундаментальные работы по изучению адсорбции органических веществ на ртутном электроде были выполнены электрокапилляр-ным методом еще в начале XX в. Ж- Гун и А. И. Фрумкиным. К настоящему времени на ртути изучена адсорбция многих сотен органических соединений. [c.17]

    Если анионы фона обладают специфической адсорбируемостью, то одновременно с двумя уже рассмотренными механизмами влияния электролита фона необходимо учитывать совместную адсорбцию двух поверхностно-активных компонентов органических молекул или ионов и анионов фона. Когда оба компонента адсорбируются в пределах одного общего монослоя, для описания их совместной адсорбции можно воспользоваться изотермами (2.54) и моделью трех параллельных конденсаторов [уравнения (2.91) — (2.92)]. Этот метод, однако, весьма сложен, и поэтому на практике при Сэ = onst адсорбцию органического вещества на фоне поверхностно-активного электролита рассматривают как индивидуальную, которую в первом приближении описывают при помощи изотермы Фрумкина (2.45) или изотермы (2.46) с некоторыми эффективными значениями адсорбционных параметров В и а. Сопоставление такого приближенного подхода с анализом совместной адсорбции на основе модели трех параллельных конденсаторов показывает, что [c.79]

    Новое направление в исследованиях многокомпонентных систем было создано работами Н. С. Курнакова и привело к развитию физико-химического анализа — учению о зависимости свойств физико-химических систем от состава. К числу больших достижений XX в. относятся теория растворов сильных электролитов П. Дебая и Э. Хюккеля (1923), теория цепных реакций (Н. А. Шилов, Н. Н. Семенов), теории катализа. В последние годы интенсивно развиваются методы исследования строения и свойств молекул. К ним относятся электронный резонанс (ЭМР), масс-спектрометрия и др. Большой вклад в развитие физической химии внесли советские ученые Я. К. Сыркин, М. Е. Дяткииа (метод молекулярных орбиталей), Н. Н. Семенов (теория цепных реакций), А. Н. Фрумкин (фундаментальные исследования в области электрохимии), Н. А. Измайлов (теория электрохимии неводных растворов). [c.8]

    Вторым методом, разработанным А. Н. Фрумкиным и А. Д. Обручевой, является исследование адсорбции потенциалопределяющих ионов. При погружении пластинки металла в раствор, содержащий соль с нотенциалопределяющим ионом и соль с любым другим ионом, будет происходить положительная или отрицательная адсорбция в зависимости от соотношения в концентрации ионов в данном растворе сив нулевом растворе с . При с = i не будет наблюдаться ни положительная, ни отрицательная адсорбция. Потенциал, который имеет металл.при этой концентрации, соответствует потенциалу нулевого заряда. [c.388]


Библиография для Фрумкин метод: [c.33]    [c.12]   
Смотреть страницы где упоминается термин Фрумкин метод: [c.267]    [c.267]    [c.147]    [c.248]    [c.22]    [c.116]    [c.208]    [c.169]   
Коллоидная химия 1982 (1982) -- [ c.69 ]




ПОИСК





Смотрите так же термины и статьи:

Новые методы исследования катализа и катализаторов Применение электрохимических методов к исследованию каталитических активных поверхностей.— А. Н. Фрумкин

Фрумкина



© 2025 chem21.info Реклама на сайте