Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вода молекулярные слои

    Коллоидно-химическую науку, однако, интересуют формы молекулярно связанной воды. Нами ранее [71—74] было показано, что следует выделять сорбционно (прочно) связанную воду, воду граничных слоев и осмотически связанную воду. Свойства и отличительные особенности указанных категорий молекулярно связанной воды удобно рассмотреть применительно к слоистым и слоисто-ленточным силикатам, которые обладают большой вариабельностью коллоидно-химических свойств в зависимости от особенностей строения, состава обменного комплекса, и в последнее время находят все возрастающее применение в качестве эффективных сорбентов, катализаторов, наполнителей полимерных сред, загустителей, пластификаторов, компонентов буровых растворов и т. д. [c.31]


    Исследователей, занимающихся проблемой лиофильности дисперсных систем, всегда интересовало, адсорбция скольких молекулярных слоев воды сопровождается заметным тепловым эффектом и какой вклад в суммарную интегральную теплоту смачивания вносит тепло, выделяющееся при адсорбции первого и последующих слоев воды. Выбор в качестве объектов исследования слоистых силикатов с расширяющейся структурной ячейкой, для которых характерно ступенчатое заполнение межслоевых промежутков, комплексное применение для их исследования рентгеновского, адсорбционного и термохимического методов анализа позволяет ответить на эти вопросы. [c.32]

    Исследовано [281] продольное перемешивание при течении воды сквозь слой стеклянных шариков диаметром 63,5—200 мкм, содержащий 20%-ный раствор хлорида аммония. Коэффициент продольного перемешивания определен по экспериментальной кривой в координатах безразмерное время—концентрация хлорида аммония в промывной жидкости. Коэффициент молекулярной диффузии установлен при низких скоростях жидкости. Отмечены стадии поршневого вытеснения и молекулярной диффузии из пленки жидкости у поверхности частиц. Дано математическое описание процесса. [c.257]

    Выделены ряды устойчивых межплоскостных расстояний для различных катионзамещенных форм глинистых минералов. Зависимость дискретных изменений расстояний от давления паров воды приведена на рис. 38. Следует отметить, что формирующееся количество молекулярных слоев воды зависит от рода обменного иона и связано с явлением набухания. Несомненно, что ступенчатый характер гидратации монтмориллонита и вермикулита должен определять ход изотермы сорбции воды на этих минералах. Помимо подвижности отдельных частей адсорбированной воды должна существовать подвижность (самодиффузия) и самих молекул в межслоевом пространстве монтмориллонита. [c.102]

    Образующийся молекулярный бром, придающий водному раствору желто-бурую окраску, можно экстрагировать из водной фазы органическими растворителями (хлороформ, четыреххлористый углерод, бензол и др.), в которых он растворяется больше, чем в воде. Органический слой окрашивается в желто-бурый или желто-оранжевый цвет. [c.452]

    Время же коалесценции глобул воды в нефти во многом зависит от вязкости нефти. Большое противодействие коалесценции в этом случае оказывает наличие в нефти веществ, образующих на поверхности глобул адсорбционные слои, обладающие структурно-механическими свойствами. Эти вещества носят название эмульгаторов. Те из них, которые молекулярно растворены в углеводородах нефти, например смолы, образуют молекулярные слои на границе раздела фаз. Но обычно вместе с ними бывают растворены и другие кислородсодержащие вещества асфальтены, органические кислоты и т. д., придающие нефти свойства коллоидного раствора. Эти вещества более активны, чем смолы. Они подавляют адсорбцию последних и адсорбируются сами на границе раздела фаз нефть — вода, образуя коллоидно-адсорбционные слои, обладающие высокими структурно-механическими свойствами. Особенно прочные структуры образуют асфальтены. [c.92]


    Как видно из табл. 14, константы Гамакера заметно возрастают с увеличением сродства органической фазы, из которой получают пленку, к воде, что может быть связано как с некоторым общим увеличением плотности черной пленки, так и с локальным увеличением концентрации метиленовых групп в ближайших к водной фазе молекулярных слоях вследствие изменения ориентации радикалов ПАВ в таких пленках [18]. [c.140]

    Процессы атмосферной коррозии развиваются преимущественно под адсорбционными слоями газов (паров) или тонкими пленками воды. В естественных условиях толщина пленки воды на металлах может изменяться от нескольких молекулярных слоев до десятков [c.26]

    Если площадь, занимаемую адсорбированной молекулой воды, принять равной 0,1 нм , то как видно на рис. 19 и 20, условная толщина физически адсорбированного на поверхности металлов слоя воды (выражается отношением п=У/Ут, где V — общее количество адсорбированных молекул воды, У — количество молекул НгО в плотноупакованном монослое) изменяется от 1—1,5 монослоя при Р/Ро=0,3 до 12—18 молекулярных слоев при влажности, близкой к 100%. [c.47]

    Поверхностная проводимость кварца в воздухе влажностью 20—30% (где, согласно БЭТ, формируется молекулярный слой воды) резко возрастает. Это указывает на то, что вода, адсорбированная в ленгмюровской области, обладает электрическими свойствами, отличными от воды, находящейся в полимолекулярных слоях. Предполагается, что при формировании мономолекулярного слоя (и последующих одного-двух) происходит диссоциация водьг. Этот процесс продолжается до тех пор, пока на границе раздела не будет завершено формирование двойного электрического слоя. [c.52]

    Излучение Д-линии натрия (589 нм) проходит через слой (толщина 100 см) водного раствора сахарозы, содержащего 10 г сахарозы в 100 см . Рассчитать ///о, где /о — интенсивность света, рассеянного чистой водой. Молекулярный вес сахарозы составляет 342,30 и dn/d = 15 г- -см . Показатель преломления воды при 20° С равен [c.622]

    Согласно адсорбционной теории наступление пассивного состояния не обязательно связано с образованием полимолекулярной сксндной пленки. Оно может быть достигнуто также за счет торможения процесса растворения, вызванного адсорбированными атомами кислорода. Появление кислородных атомов на поверхности металла в результате разряда ионов 0Н (или молекул воды) может происходить при потенциалах более низких, чем те, при которых выделяется кислород или образуются оксиды. Адсорбированные атомы кислорода пассивируют металл, или создавая на его поверхности сплошной мономолекулярный слой, или блокируя наиболее активные участки поверхности, или, наконец, изменяя эффективную величину скачка потенциала на границе металл — раствор. Представление о сплошном мономоле1сулярном слое кислородных атомов как о причине пассивности металлов не дает ничего принципиально нового по сравнению с пленочной теорией пассивности, тем более, что такой слой трудно отллчить от поверхностного оксида. По количеству кислорода мономолекулярный слой его адсорбированных атомов (или молекул) при плотной упаковке эквивалентен двум — четырем молекулярным слоям, составленным из поверхностного оксида. [c.483]

    Таким образом, с привлечением обобщенной теории ДЛФО классификация молекулярно связанной воды на адсорбционно (прочно связанную) воду, воду граничных слоев и осмотически связанную воду получает надежное теоретическое обоснование. Первые две категории воды в теории ДЛФО рассматриваются как внутренняя, более прочно связанная с гидрофильной поверхностью, и внешняя часть граничного слоя, обладающего измененной по сравнению с объемной водой структурой. Формирование слоя осмотически связанной воды регулируется ионноэлектростатической составляющей расклинивающего давления. [c.45]

    Итак, в условиях трехфазной границы раздела возможности существования или разрыва граничного слоя, прилипания или отрыва капель нефти или воды на поверхности, а следовательно, кинетика процесса вытеснения этих жидкостей в пористой среде определяется молекулярной природой поверхности породы, слагающей продуктивные пласты, а также молекулярно-поверхностными и физико-химическими свойствами нефти и воды. В зависимости от свойств этих жидкостей и их состояния в пористой среде возникающие при совместном движении нефти и воды молекулярно-поверхностные явления, обусловленные влиянием граничных слоев, могут являться одной из серьезных причин, приводящих к значительному снижению коэффициента нефтеотдачи. [c.97]

    Одно время химики-коллоидники объясняли большинство явлений существованием сольватационных оболочек. Однако с современной точки зрения влияние гидратации не так велико. Даже наиболее сильные гидрофильные группы, а именно ионы, связывают только один или два молекулярных слоя воды, в то время как умеренно гидрофильные группы (такие как —ОН, —СООН, —ХНа) просто соединяются в воде водородными связями. Поэтому гидратированная поверхность (например, целлюлозы) не оказывает значительного действия на расстоянии нескольких ангстрем .  [c.83]


    Состояние воды у поверхности полностью еще не установлено. Дерягиным и другими исследователями показано, что значительные слои воды в действительности являются неподвижными. Имеется множество данных, согласующихся с этой теорией, но они не являются абсолютными. Большинство исследователей предполагают существование одного или двух молекулярных слоев вокруг ионов, связь которых ослабевает при увеличении расстояния. Имеются некоторые данные против наличия толстых вязких слоев, полученные из кинетики утончения пленки пены. Ликлема, Шолтен и Майзельс (1965) нашли, что утончение описывается гидродинамическим уравнением, основанном на предположении о нормальной вязкости они установили, что любые вязкие слои не могут достигать толщины 10 А. Тем не менее, эффективная вязкость внутри слоя Гуи остается неопределенной в теории электрофореза. [c.101]

    Для структуры тоберморитоподобных гидросиликатов характерно слоистое строение, сходнос со слоистым строением мoнтмopилJИJ-нита. Вода между слоями находится в молекулярной форме. В зависимости от температуры и влажности окружающей среды содс]5-жание межслоевой воды может меняться без нарушения структуры, составляя 3 8 или 18 Н2О в одной ячейке. При этом расстояние между слоями составляет 9 11 или 14-10 см. [c.94]

    Следует отметить, что экспериментально определить истинное значение краевого угла смачивания достаточно трудно, а иногда и невозможно. Это связано с тем, что смачивание поверхности сильно зависит даже от следов загрязнений. Смачивание резко изменяется уже при образовании моно-молекулярного слоя, между тем установлено, что толщина граничного слоя воды, например на стекле, достигает 100А и с трудом удаляется даже при нагревании в вакууме при 400-500°С /56/. Больщинство веществ, в том числе металлы, хорошо окисляются даже при контакте с воздухом, и образующиеся окислы резко меняют смачиваемость. На смачивание влияет также шероховатость поверхности, усиливая соответствующую фильность последней. На краевой угол смачивания влияют условия образования поверхности. Так, краевой угол смачивания водой поверхности стеариновой кислоты составляет при охлаждении расплава кислоты в воздухе 85 , тогда как при охлаждении на стекле лишь 47°. На основании всех этих особенностей даже утверждается /43/, что прогноз парафиностойкости поверхности с позиций обычных методов оценки фильности невозможен. [c.101]

    Согласно взглядам Хендрикса и Джефферсона на один молекулярный слой каждой элементарной ячейки глинистого минерала (монтмориллонита и вермикулита) приходится только четыре молекулы воды, в то время как при плотной упаковке — шесть. Плотность адсорбированной в данном случае воды по подсчетам Грима меньше 1. В данной (усеме структура адсорбированной воды представляет собой структуру льда, растянутую так, что направления связей молекул воды в ней расположены в одной и той же плоскости. Масей, основываясь на сходстве структур льда и атомов кислорода, расположенных на поверхности листа слоистого глинистого минерала, предположил, что адсорбированная вода полностью сохраняет структуру льда. [c.101]

    Этот тип упаковки дает в результате гексагональные кольца молекул НаО, которые подобны гексагональным кольцам кислородов в вершинах 8102-тетраэдров (рис. 37, а, Ь, с, й, е, /). Укладка в такой конфигурации будет Рыхлой—на элементарную ячейку слоя приходится только 4 молекулы воды для отдельного слоя молекул воды увеличение меж-плоскостного расстояния составляет 1,78 А. При высоких состояниях гидратации молекулы НзО в монтмориллоните и вермикулите имеют тенденцию образовывать гексагональные кольца, которые подобны гексагональным кольцам кислородов в основаниях связанных SiO. -тетраэдров (рис. 37 1, 2, 3, 4, 5, 6). В этой конфигурации укладка более плотная. На элементарную ячейку каждого слоя молекул приходится 6 молекул водьь Увеличение высоты для отдельного слоя воды составляет уже 2,76 А, так как молекулы воды непосредственно накладываются на атомы кислорода. При более высоких степенях гидратации молекулы воды занимают даже центры гексагональных колец воды и гексагональных колец поверхностных кислородов, которые не заняты обменными катионами. Последние лишь воздействуют на меж-слоевые силы притяжения и таким образом регулируют организацию одного или двух молекулярных слоев воды при низких относительных давлениях и дальнейшее их возрастание при повышении р/рз.  [c.101]

    В зависимости от природы образующих их веществ различают хрупкие гели (построены из жестких частиц) и эластичные гели (образованы гибкими макромолекулами). Хрупкие гели образуются коллоидными частицами ЗгОз, Т Оз, 5пОг, РегОз, УгОб. Типичным представителем является гель кремневой кислоты. Благодаря жесткости частиц и каркаса, который они образуют, хрупкие гели не набухают. Хрупкие гели имеют сильно пористую структуру с множеством узких жестких капилляров. Такие системы могут поглощать большие количества воды и других смачивающих стенки капилляров жидкостей. При постепенном оводне-нии высушенного хрупкого геля первые порции воды или другой жидкости, смачивая стенки капилляров, образуют на их поверхности тонкие молекулярные слои жидкости с низким давлением пара при дальнейшем оводнении давление пара растет и происходит капиллярная конденсация. [c.371]

    И пузырька. Изменениё энергии Гиббса при уменьшении толш,ины б жидкой прослойки между частицей и пузырьком при их сближении показано] на рис. 15.3 (по А. Н. Фрумкину). Вначале, по мере уменьшения б, вода из жидкой прослойки удаляется легко (участок кривой 1—2). После соприкосновения гидратных оболочек частицы и пузырька затрата энергии на удаление воды резко возрастает, и энергия Гиббса О прослойки увеличивается (участок 2—3). При дальнейшем сближении частицы с пузырьком (участок 3—4) О резко уменьшается — гидратная прослойка становится неустойчивой, разрывается, и частица прилипает к пузырьку. Однако на поверхности частицы остается прочно связанный с ней очень тонкий слой воды молекулярных размеров, удаление которого потребовало бы очень большой затраты внешней энергии, что сопровождалось бы значительным ростом С (участок 4—5). [c.331]

    Выделяющийся иод скрашиваег раствор в желто-коричневый цвет. Молекулярный иод можно эксфагировать из водной фазы хлороформом, бензолом и другими органическими растворителями, не смешивающимися с водой, в которых молекулярный иод растворяется лучше, чем н воде. Органический слой окрашиваеи я и фиолетовый цвет, а водный — в светло-коричневый. [c.454]

    Расчет числа слоев ПАВ, адсорбировавшихся на поверхности металла, позволил определить характер адсорбции неионогенное ПАВ ОП-10 адсорбируется мономолекулярно, ионогенные ПАВ — полпмолекулярно. Наиболее многослойно адсорбируется катапин А (более 250 молекулярных слоев). При использовании ПАВ в процессах добычи нефти необходимо знать концентрацию их в воде, обеспечивающую насыщение первого от поверхности металла мо-номолекулярного слоя. Например, противоизносные свойства водных растворов ПАВ достигают максимума после насыщения первого мономолекулярного слоя на поверхности металла, и дальнейшая адсорбция ПАВ не изменяет эти свойства. Следовательно, при промышленном применении ПАВ контроль за их количеством в водном растворе должен состоять только в поддержании концентрации, обеспечивающей насыщение первого мономолекулярного слоя на поверхности металла. Для исследованных ПАВ концентрация насыщения первого слоя лежит в пределах 0,005—0,075%. [c.27]

    Влажная А.к. развивается при относит, влажности выше критической, т.е. >70% для чистой атмосферы, когда на пов-сти металла возникает тонкая (от 2-3 до десятков молекулярных слоев) адсорбц. пленка воды, и происходит по электрохим. механизму. Катодная р-ция имеет вид Ох + рНзО + те - Red + ЮН , где п, т, р-стехиометрич. коэф. электрохим. восстановления, Ox-Oj, О3, Н2О2 и др. окислители, Red-их восстановленная форма (м. б. заряженной). Металл М окисляется по анодной р-ции  [c.213]

    В первых двух молекулярных слоях воды на поверхности вязкость, несомненно, достаточно высока, так как первый слой воды в основном находится в равновесии с SisOH-группами и связан водородными связями с ними. Более того, на такую вязкость влияет смешение частиц, поскольку временной фактор играет определенную роль в образовании и разрыве водородных связей. [c.864]


Смотреть страницы где упоминается термин Вода молекулярные слои: [c.126]    [c.33]    [c.35]    [c.63]    [c.30]    [c.39]    [c.336]    [c.275]    [c.57]    [c.46]    [c.50]    [c.29]    [c.34]    [c.316]    [c.380]    [c.353]    [c.33]    [c.35]    [c.81]    [c.260]    [c.173]    [c.308]   
Химия и биология белков (1953) -- [ c.105 , c.106 ]




ПОИСК







© 2025 chem21.info Реклама на сайте