Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции первого порядка и мономолекулярные реакции

    Мономолекулярные элементарные реакции являются реакциями первого порядка, бимолекулярные — второго. В сложных реакциях молекулярность и порядок, как правило, не совпадают. [c.221]

    Механизм мономолекулярных реакций. В элементарном акте мономолекулярной реакции участвует всего одна молекула. В соответствии с теорией столкновений реакция начинается со встречи двух активных молекул. Количество столкновений пропорционально квадрату концентрации. Поэтому, казалось бы, что мономолекулярные реакции, как и бимолекулярные, должны иметь порядок, равный двум. Но многие мономолекулярные реакции описываются уравнением первого порядка, причем порядок реакции может изменяться при изменении концентрации (давления) и быть дробным. [c.243]


    Ф. Линдеман предложил первую теорию мономолекулярных реакций, объясняющую первый порядок этих реакций при бимолекулярной активации молекул. Последующее развитие теория мономолекулярных реакций получила в работах Хиншельвуда (1927), Райса и Рамспергера (1927). Касселя (1928). Слейтера (1939), Маркуса (1952). [c.344]

    Можно было бы попытаться объяснить первый порядок этих реакций самопроизвольным распадом молекул, т. е. только мономолекулярной стадией. Так происходит распад радиоактивных. элементов. Каждый атом элемента распадается независимо от [c.274]

    Можно ли и как изменить порядок мономолекулярной реакции, если в данных условиях она протекает по первому порядку  [c.79]

    Ф. Линдеман предложил первую теорию мономолекулярных реакций, объясняющую первый порядок этих реакций при бимолекулярной активации молекул. Последующее развитие теория мономолекулярных реакций получила в работах Хиншельвуда (1927), Райса и [c.370]

    Такой механизм также предсказывает образование этана в качестве начального устойчивого продукта. Если реакцию (19) рассматривать как мономолекулярную, то реакция (22) должна быть завершающей, чтобы сохранить первый порядок реакции. Это не было подтверждено. [c.75]

    Порядок реакции и ее молекулярность. Реакции можно различать по числу молекул в стехиометрическом уравнении или по числу молекул, участвующих одновременно в той стадии, которая определяет скорость всей реакции, т. е. по ее молекулярности, а также по ее порядку. Сумма показателей степени в уравнении (I, 8) п=р+9+г представляет собой суммарный порядок реакции, показатель р—порядок реакции по компоненту Л и т. д. Порядок, таким образом, служит эмпирическим признаком, применимым только к уравнению скорости, составленному по типу уравнения (I, 8). Если стехиометрическое уравнение правильно отражает истинный механизм реакции, порядок и молекулярность совпадают, и обе величины равны п=а- -Ь- -с или раздельно р=а, д=Ь, г=с. В таких случаях реакция первого порядка, является мономолекулярной реакцией, а реакция второго порядка—бимолекулярной и т. д. [c.23]

    Порядок реакции определяют экспериментально и теоретически обосновывают, почему данная реакция имеет именно такой порядок. Для этого выясняют механизм реакции. Чаще всего порядок реакции (а и Р) не совпадает со стехиометрическими коэффициентами реакции (а,Ь), которые отражают молекулярность реакции. Но, если стехиометрическое уравнение правильно отражает механизм реакции, то порядок реакции совпадает с ее молекулярностью. При этом реакция первого порядка является мономолекулярной, второго — бимолекулярной и т. д. Скорости превращения различных компонентов, участвующих в реакции, связаны друг с другом стехиометрическими коэффициентами. Например, если стехиометрическое уравнение реакции имеет вид А + В 20, то соотношение между скоростями превращения компонентов запишется так [c.75]


    Известно, что хотя обе реакции являются мономолекулярными, кинетический порядок этих реакций может быть различным и зависит от выбора начальных концентраций и температур. Условию f Отбудет соответствовать первый порядок, а условию f,. > т — второй. Здесь — среднее время свободного пробега молекул. При выбранных начальных условиях f =0,5 10 с. [c.206]

    Реакция имеет первый порядок по давлению, но замедляется по сравнению с мономолекулярной во времени. [c.139]

    Закон скорости реакции — это экспериментально устанавливаемый факт. Из него пытаются узнать молекулярность реакции, которую можно определить как число молекул, объединяющихся для образования активированного комплекса. Если удается узнать, сколько молекул и какие именно участвуют в образовании активированного комплекса, это уже много говорит о механизме реакции. Экспериментально определяемый порядок реакции необязательно совпадает с молекулярностью. Любая реакция независимо от того, сколько стадий она включает, подчиняется только одному закону скорости, но каждая стадия механизма имеет свою собственную молекулярность. Для одностадийных реакций (идущих без образования интермедиатов) порядок — это то же самое, что молекулярность. Одностадийная реакция первого порядка всегда мономолекулярная одностадийная реакция второго порядка по А всегда включает две молекулы А если реакция имеет первый порядок по А и по В, молекула А реагирует с одной молекулой В и т. д. Если реакция происходит в две или несколько стадий, порядок каждой стадии — это то же самое, что молекулярность той же стадии. Это позволяет прогнозировать закон скорости для любого предполагаемого механизма, хотя такие расчеты могут оказаться трудоемкими [21]. Если одна из стадий механизма значительно медленнее всех остальных, что встречается очень часто, то скорость реакции по существу будет такой же, как скорость самой медленной стадии, которую поэтому называют определяющей скорость, или лимитируюш,ей стадией [22]. [c.288]

    Чем давление больше, тем чаще дезактивируются возбужденные молекулы. Поэтому при высоких давлениях наблюдается первый порядок реакции. При понижении давления уменьшается концентрация реагента, возбужденные молекулы дезактивируются реже и при достаточно низком давлении реакция идет по кинетическому уравнению второго порядка. Добавление постороннего газа ведет к тому, что молекулы примеси, участвуя в дезактивирующих столкновениях, компенсируют уменьшение концентрации реагирующих газов и устраняют превращение мономолекулярных реакций первого порядка в реакции второго порядка. [c.349]

    Таким образом, порядок реакции следует рассматривать лишь в связи с механизмом реакции в целом, помня, что этот механизм складывается из отдельных элементарных стадий. В ТО время как порядок реакции определяется для реакции в целом, понятие молекулярность реакции относится к ее отдельным стадиям. Молекулярность реакции равна числу молекул, которые сталкиваются в элементарном акте химического превращения (на некоторой промежуточной стадии процесса). Оче- Видно, что чаще всего происходят двойные столкновения (двух частиц) между реагирующими молекулами, а следовательно, в большинстве случаев элементарные стадии (или элементарные реакции) бимолекулярны. Вероятность тройных соударений (соответствующая тримолекулярным реакциям) уже значительно меньше, а реакции с молекулярностью более трех практически не наблюдаются. Настоящие мономолекулярные реакции, в которых молекулы распадаются сами без какого-либо внешнего воздействия, также встречаются очень редко. Наиболее известный пример мономолекулярного процесса, протекающего по первому порядку, — это радиоактивный распад. Он происходит спонтанно, и на него практически не оказывают влияния внешние воздействия. Скорость распада в любой момент времени t пропорциональна числу имеющихся атомов Ы  [c.152]

    И Ю1 Да при большом избытке одного из реагируюш,их веществ по сравнению с другими его концентрация остается практически постоянной в течение реакции. Тогда порядок реакции будет на единицу меньше, чем следовало бы ожидать по стехиометрическому уравнению. Примером может служить реакция инверсии тростникового сахара или гидратации мочевины. Эти реакции по существу бимолекулярны, но протекают, как реакции мономолекулярные, т. е. подчиняются уравнению реакции первого порядка, так как концентрацию воды, присутствующей в большом избытке, в них можно считать неизменной и поэтому ее можно объединить с константой скорости в одну постоянную величину. Так, скорость реакции инверсии тростникового сахара можно представить [c.326]

    Теперь скорость реакции зависит от концентрации в первой степени, т. е. реакция имеет порядок, равный единице. Суммарную реакцию лимитирует вторая, мономолекулярная, стадия. Затрудненность этой стадии объясняется тем, что активные молекулы часто теряют свою активность при столкновениях и не успевают образовать продукты реакции. Естественно, что при средних концентрациях мономолекулярные реакции могут иметь дробный порядок, лежащий в пределах между 1 и 2. [c.285]


    В качестве иллюстрации отличия порядка реакции от молекулярности рассмотрим вопрос о том, какой порядок может иметь мономолекулярная реакция. Элементарным актом многих моно-молекулярных реакций является распад молекулы, например диссоциация перекиси третичного бутила в паровой фазе. Прежде чем распасться, молекула исходного вещества должна приобрести избыток энергии в результате столкновений с другими молекулами. Эго означает, что реакция идет в две стадии первая — образование активных молекул и вторая — их разложение. Если достаточная часть избыточной энергии сосредоточивается на одной связи внутри молекулы, то происходит распад молекулы. В зависимости от соотношения скоростей этих стадий суммарная реакция может иметь и второй порядок. [c.321]

    Самая медленная стадия — мономолекулярная реакция первого порядка, и она обусловливает первый порядок всего процесса в целом. Сложением уравнений всех стадий с учетом стехиометрических коэффициентов получаем суммарное уравнение процесса, а перемножением констант равновесия отдельных стадий— константу равновесия процесса в целом  [c.42]

    Степенная зависимость от концентрации реагирующих веществ практически всегда выполняется для скорости отдельных стадий химического процесса (кроме мономолекулярных реакций в газовой фазе). При этом порядок по отдельному компоненту и суммарный порядок реакции всегда являются целыми положительными числами. Для отдельной стадии процесса порядок обычно не превышает трех. В соответствии с этим особо важное значение в химической кинетике имеют реакции первого, второго и третьего порядков. [c.216]

    Первая, медленная мономолекулярная ступень, определяет наблюдаемый первый порядок суммарной реакции. Классическим примером реакции первого порядка в растворе является гидролитический распад тростникового сахара в воде на глюкозу и фруктозу [c.217]

    Реакции, для которых в опыте наблюдается первый порядок реакции, но в то же время не являющиеся мономолекулярными, называются псевдомономолекулярными. [c.90]

    Вполне понятно, что вероятность столкновения сразу трех и большего числа молекул меньше, чем вероятность столкновения двух молекул. Поэтому тримолекулярные реакции менее вероятны, чем бимолекулярные. Если в реакцию и вступает более трех молекул, то в действительности оказывается, что она проходит через ряд промежуточных стадий, в каждой из которых участвуют одна-две молекулы. В зависимости от вида уравнения, связывающего скорость реакции с концентрацией реагирующих веществ, различают реакции первого, второго и третьего порядка. Порядок реакции не всегда совпадает с молекулярностью ее. Так, для мономолекулярных реакций, т. е. таких реакций, при которых превращению подвергают только одну молекулу какого-нибудь вещества, скорость реакции будет пропорциональна только его концентрации в данный момент, что можно записать следующим уравнением  [c.146]

    Рассмотрим мономолекулярные реакции. Может ли их кинетический порядок отличаться от первого Пусть для такой реакции при общей концентрации реагирующего вещества, равной С, концентрация активных  [c.239]

    Как и в случае Е2, эта реакция имеет первый порядок по основанию и первый порядок по субстрату. Тем не менее она является мономолекулярной, поскольку в стадии, лимитирующей скорость реакции, участвует только одна частица. [c.232]

    Методы составлений кинетических уравнений (моделей) гете-ЕОГенных каталитических р.еакцкй. Как правило, многие гетероген -ны е каталитические реакции (как ионного, так и электронного типов) удовлетворительно описываются кинетическими уравнениями пер — во го порядка (особенно в области малых заполнений поверхности катализатора). Это, по —видимому, обусловливается тем, что лимитирующей суммарный каталитический процесс стадией является хемосорбция на однородной поверхности катализатора, осуществляемая мономолекулярно. При этом первый кинетический порядок имеет место обычно независимо от того, осуществляется ли хемо — сорбция по одноцентровому или многоцентровому (в виде мультип — летов, ансамблей и др.) механизмам. Установлено, что большее влияние на кинетический порядок каталитических реакций оказывает неоднородность поверхности. В ряде случаев большая адекватность достигается при использовании кинетических уравнений (моделей), выведенных исходя из представлений неоднородности поверхности (Рогинский С.З., Зельдович Я.Б., Темкин М.И. и др.). [c.98]

    Вследствие увеличения концентрации X с ростом давления данная р-ция имеет второй порядок при малых давлениях и первый порядок при больших давлениях (см. Мономолекулярные реакции). Строго говоря, каждая из приведенных выше р-цин должна описываться системой кинетич. ур-ний, отвечающих микроскопич. актам с участием частиц с разл. заселенностью энергетич. уровней. [c.76]

    Так как может протекать и мономолекулярное, и индуцированное разложение одновременно, то наблюдаемую скорость реакции следует считать суммой обоих этих процессов. Наиболее легко обнаружить мономолекулярное разложение, если наблюдать разложение перекиси в присутствии ингибиторов, которые подавляют индуцированный процесс. В инертных растворителях перекись бензоила разлагается со скоростью реакции первого порядка . Однако в растворителях, дающих радикалы, которые Могут атаковать перекись, скорость разложения и порядок его часто больше 1,0. Разложение в диоксане, например, протекает наполовину за 23 мин при 80° С и не является реакцией первого порядка. Между тем если к диоксану добавить иод, стирол, тринитробензол или любой другой ингибитор, то реакция разложения перекиси станет первого порядка, а период полуразложения перекиси будет равен 270 мин. Отсюда следует, что в диоксане индуцированное разложение подавляется эффективными ингибиторами. Скорости разложения ряда замещенных по кольцу перекисей бензоила в диоксане, содержащем 3,4-дихлорстирол, оказались различными. В присутствии этого ингибитора влияние заместителей на мономолекулярное разложение можно изучить независимо от процесса индуцированного разложения. Было найдено, что скорости мономолекулярных реакций подчиняются уравнению Гаммета  [c.92]

    Растворитель как реагирующее вещество. Мономолекулярные реакции. Имеется ряд случаев, когда растворенное вещество реагирует с растворителем. Такие примеры уже приводились выше (стр. 194). То же самое происходит, например, при гидролизе монохлоруксусной кислоты в водном растворе или в случае реакции замещенных бензилхлоридов в 507о-ной смеси воды и спирта. Хотя в таких случаях в реакции фактически принимают участие две молекулы, но кинетически получается первый порядок. [c.209]

    Присоединение шести молекул формальдегида к меламину приводит к получению гексаметилолмеламина. Эта реакция слабо эндотермическая, ее скорость в 1,5 раза меньше , чем скорость получения триметилолмеламина. Хотя реакция присоединения является бимолекулярной при мольном соотношении формальдегида и меламина 1 1 —3 1, она протекает как реакция первого порядка, при мольном соотношении выше 3 1 порядок реакции находится между первым и вторым, и только при мольном соотношении более 6 1 реакция становится реакцией второго порядка . Обратная реакция (отщепление формальдегида) является мономолекулярной. Скорость реакции присоединения формальдегида к иминогруппе во много раз меньше скорости реакции отщепления. Например, при мольном соотношении исходных реагентов 6 1 средняя величина константы равновесия реакции метилолирования иминогруппы составляет  [c.73]

    НОГО столба скорость разложения уменьшается до предельной вепичинЫг составпяюш,ей 1/10 от начальной скорости. Энергия активации полностью ингибированной реакции постоянна в значительном интервале давлений, достигая, согласно работам Ингольда, Стэббса и Гиншельвуда [21], величины 74,7 ккал и величины 77,3 ккал, согласно Стипи и Шейну [45]. Ингибированная реакция имеет первый порядок по отношению к концентрации этана в условиях высоких давлений. Порядок реакции начинает увеличиваться при начальном давлении несколько нин е 250 мм и прп 2 мм достигает величины второго порядка в соответствии с теорией столкновения молекул при мономолекулярных реакциях. [c.21]

    При низких температурах (до 500° С) происходят почти исключительно реакцип полимеризации олефинов, имеющие 2-й кинетический порядок. При высоких же температурах (выше 600° С), когда происходят преимущественно реакции распада, наблюдается обычно 1-й кинетический порядок. Изменение кинетического порядка реакции крекинга олефинов особенно подробно изучил Миценгендлер (90) на примере крекинга пропена. Указанный автор нашел, что при температуре 480° С и давлении в пределах 3—28 ат кинетика крекинга пропена подчиняется в первом приближении уравнению бимолекулярных реакций. При 620° С наблюдалось уже отступление от бимолекулярного характера кинетики крекинга. Наконец, при 600° С кинетика крекинга пропепа приблизительно подчинялась уже уравнению мономолекулярных реакций. Работы ряда других авторов (см. ниже) также подтверждают сделанное заключение. Поэтому можно сделать следующий общий вывод предварительного характера о кинетическом порядке реакции крекинга олефинов. Прв температурах ниже 600° С, особенно при повышенных давлениях, реакция крекинга олефинов подчиняется 2-му кинетическому порядку. При температурах же 600° С и выше реакция крекинга олефинов подчиняется 1-му кинетическому порядку. В соответствии с этим мы будем раздельно рассматривать кинетику крекинга олефинов, с одной стороны, нри температурах ниже 500° С и, с другой, — при температурах 600° С и выше. [c.131]

    Механизм свободных радикалов предсказывает изменение порядка реакции от 1/3 при высоких давлениях до 1 /2 при низких давлениях, при этом следует принимать во внимание изменение реакции инициирования цепи от мономолекулярной до бимолекулярной при низких давлениях согласно теории активации молекул столкновением. Такое предсказанное изменение находится в качественном соответствии с наблюдаемым уменьшением значений констант первого порядка при уменьшении давления. По экспериментальным данным реакция при высоких давлениях имеет приближенно первый порядок, но следует иметь в виду, что отличить реакцию первого порядка от реакции половинного порядка по одному только изменению начального давления в ограниченном интервале и наблюдению смещения констант первого порядка довольно трудно. Кухлер и Тиле [25] предполон или, что даже при высоких давлениях инициирование цепи является бимолекулярной реакцией, для которой теоретически предсказывается первый порядок при указанном давлепии. Это, конечно, не может согласоваться с их процессом экстраполирования констант скорости до бесконечного давлеиия, так как этот процесс означает, что реакция мономолекулярна, по крайней мере, при высоких давлениях. [c.25]

    Кинетика реакции полимеризации стирола и а-метилстирола, катализируемой ЗпС1 , изучена Пеппером [120] он наблюдал увеличение скорости реакции и молекулярного веса полимера при увеличении диэлектрической постоянной растворителя. Детальное исследование хода реакции в дихлорэтилене показало первый порядок скорости относительно ЗпС1 и второй порядок относительно стирола. Такой результат указывает на то, что реакция инициируется комплексом стирола с катализатором, обрыв же цепи является мономолекулярной реакцией, а также, что присутствие влаги не необходимо для реакции. Возможно, однако, что нри проведении реакции в таких галоидированных растворителях растворитель является сокатализатором при инициировании, например [c.158]

    Вычисленная при указанных условиях концентрация радикалов (ро2) "а зоне крекинга этана лишь на порядок отличается от величины ее, найденной методом орто-параводо-родной конверсии (Ю моль1л [41]). Концентрация радикалов (рис. 10) остается постоянной в течение распада при совсем малых давлениях, что обусловливает первый порядок реакции. С увеличением глубины распада при более высоких давлениях (10—20 мм) концентрация радикалов падает и причем тем заметнее, чем выше давление, с этим и связано отклонение от мономолекулярного закона для скорости. [c.149]

    Изобутан. Первые работы по кинетике крекинга изобутана были выполнены Пизом (109) и Пизом и Дергеном (112), которые пришли к выводу, что реакция протекает гомогенно и имеет, повидимому, 1-й кинетический порядок. Мономолекулярная константа скорости крекинга изобутана быстро падает по мере увеличения глубины крекинга. [c.88]

    I. Высокие давления. В этом случае может оказаться, что К- А К2. Если пренебречь в знаменателе формулы (XIII. 56) вторым слагаемым, то /Сэф = /с< = к Кч/к- здесь Као — KOH TaHTa скорости реакции при высоких давлениях. В этом случае дезактивизирующие столкновения происходят чаще химических превращений. В результате поддерживается статистически равновесная концентрация активных молекул А. Поэтому при высоких давлениях мономолекулярные реакции имеют первый порядок. [c.747]

    Молекулярность реакции представляет собой молекулярно-кинетическую характеристику системы, а понятие о порядке реакции следует из формально-кинетического описания. Для простых гомогенных реакций, протекаюших в одну стадию, эти два понятия совпадают, т. е. мономолекулярная реакция соответствует реакции первого порядка, бимолекулярная — реакции второго порядка, три-молекулярная — реакции третьего порядка. Для сложных реакций, протекающих в несколько стадий, формальное представление о порядке не связано с истинной молекулярностью реакций. Поэтому при формально-кинетическом описании таких процессов встречаются реакции дробного, нулевого и даже отрицательного порядка по одному из компонентов. Например, каталитическое разложение аммиака на поверхности вольфрама описывается уравнением и = А (реакция нулевого порядка, скорость которой не зависит от концентрации реагентов), разложение фосфина на стекле протекает в соответствии с уравнением и = йСрн (реакция первого порядка), стибин на твердой сурьме диссоциирует со скоростью ii = /e sbH, (реакция дробного порядка). Окисление оксида углерода, протекающее по уравнению 2С0-Ь02->2С02 на платиновом катализаторе, подчиняется зависимости v = k( o2/ o), т. е. эта реакция имеет порядок [c.216]

    При низких давлениях и малых значениях Ь можно пренебречь в знаменателе правой части уравнения величиной Ь р по сравнению с единицей. В этом случае, т. е. при малой степени заполнения газом поверхности катализатора, реакция будет иметь первый порядок относительно его давления р, т.е. с1С1сИ = кр. При более высоких парциальных давлениях и лучшей адсорбции (большие значения Ь ) можно пренебречь единицей по сравнению с произведением Ь р. В этом случае д.С1с11=к, т.е. реакция имеет нулевой порядок и идет с постоянной скоростью. Это обусловлено тем, что степень заполнения поверхности катализатора близка к единице и остается постоянной. Иными словами, реакция идет при постоянной концентрации реагирующего вещества в адсорбционном слое. Это наблюдается, например, при диссоциации NHз на молибдене. В промежуточных случаях, когда 0 не слишком мала, кинетика подобных мономолекулярных реакций может описываться уравнением дробного порядка  [c.277]

    Теперь скорость реакции зависит от концентрации в первой степени, т е реакция имеет порядок равный единице Суммар ную реакцию лимитирует вторая мономолекулярная стадия Затрудненность этой стадии объясняется тем что активные молек>лы часто теряют свою активность при столкновениях и не успевают образовать продукты реакции Естественно что при средних концентрациях мономолекулярные реакции могут иметь дробный порядок лежащии в пределах между 1 и 2 Схема Линдемана упрощена При более точном рассмотрении необходимо учитывать что приобретение молекулой энергии Е еще не обеспечивает ее активности, если эта энергия не сосре доточена на подвергающихся разрушению химических связях [c.285]


Смотреть страницы где упоминается термин Реакции первого порядка и мономолекулярные реакции: [c.106]    [c.284]    [c.258]    [c.132]    [c.240]    [c.278]    [c.280]    [c.242]    [c.284]   
Смотреть главы в:

Теория горения -> Реакции первого порядка и мономолекулярные реакции




ПОИСК





Смотрите так же термины и статьи:

Порядок первый

Порядок реакции

Порядок реакций и реакции первого порядка

При мономолекулярная

Реакции мономолекулярные

Реакции первого порядка

Реакции первый

Реакции порядок Порядок реакции



© 2025 chem21.info Реклама на сайте