Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес и pH водной фазы

    При применении персульфата калия и 1% эмульгатора начальный участок кривой удовлетворяет уравнению v — где [I] — концентрация инициатора (% от массы водной фазы). В интервале 0,6—3,0% персульфата калия скорость полимеризации не изменяется, а молекулярная масса полистирола понижается. [c.151]


    Зависимость скорости полимеризации от концентрации эмульгатора при применении 0,1% персульфата калия описывается также уравнением и = й[5] / , где [5] — концентрация эмульгатора (% от массы водной фазы). С увеличением количества эмульгатора увеличивается скорость полимеризации и молекулярная масса полистирола. [c.151]

    Благоприятными для скорости полимеризации являются применение мономеров с высокой концентрацией, увеличение количества эмульгатора и молекулярной массы жирной кислоты (до определенного значения), применение активной гидроперекиси, низкое содержание минеральных солей в водной фазе, отсутствие кислорода в системе и др. [c.254]

    Эффективными регуляторами молекулярной массы и свойств полихлоропрена являются также меркаптиды, хорошо растворимые в водной фазе эмульсии и позволяющие более равномерно регулировать процесс полимеризации [32]. [c.375]

    Как видно из выражения (3.46), диффузионный поток зависит от коэффициентов молекулярной диффузии мономера в водной фазе и частице О ) от размеров капель и частиц, меняющихся в ходе полимеризации (Л , Е,), а также от параметра IV, в который входят константа скорости роста цепи к , концентрация радикалов Сак- и коэффициент молекулярной диффузии в частице. Величину У можно рассматривать как параметр, характеризующий соотношение между скоростью химической реакции и скоростью диффузии молекул мономера в частице. [c.151]

    На рис. 3.2 и 3.3 показаны зависимости диффузионных потоков от параметра ] при различных размерах диаметров капель и частиц Ох, 02, 1/, р — постоянны), а также от соотношений коэффициентов молекулярной диффузии в частице и водной фазе и от размеров капель и частиц. При расчете радиусов капель и частиц полагалось, что в 1 см эмульсии находится капель и [c.151]

    Из рис. 3,3 видно, что диффузионный поток на полимер-моно-мер-частицу существенно зависит от отношения коэффициентов молекулярной диффузии в водной фазе и частице. При фиксированном отношении коэффициентов диффузии диффузионный поток возрастает по мере увеличения отношения радиуса частицы к радиусу капли. С другой стороны, с уменьшением отношения коэффициентов диффузии диффузионный поток падает, что [c.152]

    Математическая модель гетерофазной эмульсионной полимеризации включает уравнения кинетической модели процесса [15, 16] и уравнения нестационарной молекулярной диффузии в водной фазе и полимер-мономерной частице. [c.153]


    При хлоргидринировании олефинов с высоким молекулярным весом и числом углеродных атомов от 8 до 30 предложено предварительно их растворять в несмешивающихся с водой инертных органических растворителях. Затем органическую фазу смешивают с водной фазой, содержащей от 0.1 до 6.0% мае. НСЮ [130]. [c.31]

    Молекулярная растворимость мыла в воде очень мала, и основная часть мыла находится в растворе в агрегированном состоянии в виде мицелл. В мицеллах молекулы мыла ориентированы полярной частью к водной фазе, а углеводородной — внутрь мицелл, вследствие чего [c.118]

    Так, например, молекулярный иод можно экстрагировать из водной фазы экстрагентом хлороформом, в котором он более растворим, чем в воде. Экстракцию ионов алюминия из водной фазы можно провести хлороформным раствором 8-оксихинолина. Ионы алюминия образуют с 8-оксихинолином комплексное соединение — оксихинолинат алюминия (оксинат алюминия), который лу 1ше растворяется в хлороформе, чем в воде, и поэтому переходит из водной фазы в хлороформную. [c.242]

    Экстракт — отделенная жидкая органическая фаза, содержащая экстрагированное из водной фазы вещество. В вышерассмотренных примерах экстракт — это хлороформные вытяжки, содержащие экстрагированный молекулярный иод или оксихинолинат алюминия. [c.242]

    Образующийся молекулярный бром, придающий водному раствору желто-бурую окраску, можно экстрагировать из водной фазы органическими растворителями (хлороформ, четыреххлористый углерод, бензол и др.), в которых он растворяется больше, чем в воде. Органический слой окрашивается в желто-бурый или желто-оранжевый цвет. [c.452]

    При небольших концентрациях водные растворы коллоидных ПАВ молекулярно дисперсны и молекулы растворенного вещества свободно перемещаются в растворе независимо друг от друга (рис. 90, а). При увеличении концентрации до ККМ начинают образовываться мицеллы, представляющие собой сферические агрегаты, у которых углеводородные цепи молекул соединяются друг с другом, а полярные группы обращены наружу (рис. 90,6). Число молекул ПАВ в одном таком агрегате обычно составляет 50—100. По строению сферические агрегаты из молекул катионо- или анионоактивного ПАВ очень похожи на обычные коллоидные мицеллы. Двойной электрический слой у поверхности мицеллы коллоидных ПАВ возникает за счет частичной диссоцИации полярных групп, ориентированных к водной фазе (рис. 91). [c.217]

    Как уже отмечалось в разделе IV.7, влияние электролитов на Аа в различных системах бывает различным (см. рис. 37). При сравнительно малых концентрациях (с 1 моль л) молекулярные характеристики водной фазы остаются приблизительно постоянными, а изменение Аа обусловлено разницей в электростатическом взаимодействии. При очень больших концентрациях возможно и заметное изменение молекулярного взаимодействия. [c.139]

    Как видно из табл. 14, константы Гамакера заметно возрастают с увеличением сродства органической фазы, из которой получают пленку, к воде, что может быть связано как с некоторым общим увеличением плотности черной пленки, так и с локальным увеличением концентрации метиленовых групп в ближайших к водной фазе молекулярных слоях вследствие изменения ориентации радикалов ПАВ в таких пленках [18]. [c.140]

    Изучение механизма реакции в таких системах крайне затруднено вследствие различных дополнительных молекулярных взаимодействий, которые отсутствуют в рассмотренных ранее системах с разбавленными водными фазами. Именно поэтому механизм реакций в системах с концентрированными водными фазами изучен еще недостаточно. [c.25]

    Горная порода с насыщающими ее флюидами имеет развитую площадь поверхности раздела фаз. Действие поверхностноактивных веществ, подаваемых в пласт в виде водных растворов, основано на адсорбции ПАВ на указанных поверхностях, что приводит к существенному изменению молекулярно-поверхностных свойств породы, пластовой воды и нефти. Требования, предъявляемые к ПАВ, следующие стимулирование смачивающей способности вытесняющей воды снижение межфазного натяжения на границе нефть — вода вытеснение нефти с поверхности породы диспергирование нефти в водной фазе. [c.129]

    В результате глубокой окислительной деструкции изотактического [48] или аморфного [49] полипропилена получают воскообразные вещества. Окислительная деструкция проходит быстрее в присутствии ди-грет-бутилперекиси при 160° С [49], причем воскообразные эмульсии можно применять в лакокрасочной промышленности. Полимер с низким молекулярным весом (в пределах 900—30 000) и температурой плавления не ниже 100° С можно получить при термообработке полипропилена при 310—480° С в те- чение 30 мин [50]. Известен процесс окисления поли-а-олефинов, диспергированных в водной фазе, при давлении воздуха до 20 кгс см и температуре 90°С. Водные эмульсии лаурилсульфата натрия и окисленного сополимера пропилена с этиленом пригодны для шлихтования тканей, а также для производства красок и лаков [51]. [c.130]


    Легко видеть, что растворение такого газа, как ЗОа, может контролироваться сопротивлением как наружного, так и внутреннего пограничного слоя в зависимости от содержания в водной фазе ионов водорода. Если в чистой воде (или имеющей pH > 7) происходят гидратация молекул этого газа и диссоциация НаЗОз, то по мере уменьшения pH диссоциация будет подавляться. При pH <3,5 диоксид серы практически полностью будет присутствовать в молекулярной форме и сопротивление г, резко возрастет. [c.214]

    Самоассоциация между ионными парами ведет к образованию агрегатов, например димеров, трпмеров или квадруплетов. Такая ассоциация энергетически выгодна и часто наблюдается в неполярной среде, если растворы не бесконечно разбавлены. Ассоциация становится измеримой уже при таких низких концентрациях, как 0,001 моль/л. Например, криоскопическая степень ассоциации (отношение экспериментально найденной молекулярной массы к формульной) для тиоцианата тетра-н-бутиламмония в бензоле составляет 2,5 при концентрации 0,0013 моля на 1000 г растворителя, увеличивается до 31,9 при 0,281 моля на 1000 г растворителя и снова несколько снижается при более высоких концентрациях (22,7 при 0,753 моля на 1000 г растворителя) [25]. Такая ассоциация ионных пар оказывает очень сильное влияние на экстракцию солей из водной фазы в органическую (разд. 1.3.1). Степень ассоциации зависит от катиона, аниона, растворителя и концентрации. Тримеры одновалентных ионов являются заряженными частицами и проводят электрический ток таким же образом, как и ионные пары, содержащие многовалентные ионы. [c.19]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    Граничные условия (3.65)—(3.68) определяют концентрацию радикалов с в- в водной фазе, концентрацию радикалов в центре частицы с в-, концентрации мономера в центре частицы и на границе раздела фаз капля мономера—водная фаза. Условия сопряжения (3.67) на границе раздела фаз водная фаза—частица дают связь концентраций радикалов в водной фазе и в частице через коэффициент распределения и для концентрации мономера через коэффициент распределения р. Уравнения (3.68) являются условиями равенства диффузионных потоков на границе раздела фаз водная фаза—полимер-мономерная частица. Приведем обозначения задачи (3.47)—(3.68), которые не указывались выше С/ — концентрация инициатора тпр- — число растущих макрорадикалов в 1 см эмульсии Шр — число нерастущих макрорадикалов в 1 см эмульсии — вес капли с — концентрация мицелл М — молекулярный вес мономера р — плотность мономера р — плотность полимера Рз — площадь поверхности, занимаемая одним киломолем эмульгатора на поверхности адсорбированных слоев — степень агрегации мицелл — константа скорости распада инициатора k — константа скорости инициирования /Ср — константа скорости роста цепи k — константа скорости обрыва цепи / — эффективность инициирования — среднее значение концентрации мономера внутри частиц. [c.156]

    Многие нефтяные и газовые месторождения содержат большое количество сероводорода. В связи с хорошей растворимостью сероводорода в воде (около 3000 мг/л 1при 30°С) происходит уменьшение величины pH водной фазы лродукции скважины, вследствие чего основная часть сероводорода, абсорбируемая водной и углеводородной фазой, находится не в ионной, а в молекулярной форме. [c.17]

    Когда сдвиг применяют к межфазной пленке, составляющие ее молекулы, а также молекулы масляной и водной фаз, расположенные в непосредственной близости, смещаются со своих равновесных положений. Развиваемое напряжение влияет на ассоциативные молекулярные перегруппировки. Это явление теоретически рассмотрено Джоли (1954, 1956) и Олдройдом (1953, 1955). Джоли (1954, 1956) применил теорию абсолютных скоростей реакций Эйринга, которая дает следующее уравнение (Эвелло и Эйринг, 1937 Мур и Эйринг, 1938)  [c.291]

    Простейшим типом мицелл являются сферические мицеллы, постулированные Гартли. Они устойчивы в некоторой области концентраций, ненамного превышающих ККМ. На рис. 8 [10, с. 19] представлена схема сферической мицеллы, учитывающая характерные особенности ее строения. Мицелла представляет собой компактное образование с жидким з тлеводородным ядром Плотность его примерно равна плотности соответствующего жидкого углеводорода. Схема отражает тот факт, что углеводородные цепи благодаря интенсивному взаимодействию полярных групп с водой и тепловому движению могут быть частично втянутыми в водную фазу. Поэтому молярные головки молекул образуют неровную ( молекулярно шероховатую ) поверхность. По этой же причине часть метиленовых групп (по крайней мере, а-мети- [c.40]

    Понятие о твердой фазе. Термодинамическое определение фазы (см. гл. II, 9) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия, т. е. обеспечены условия свободного массопереноса и теплообмена как в объеме каждой фазы, так и в системе в целом. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примером физически однородной (однофазной), но химически неоднородной системы являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т. п. Химическая неоднородность в однофазной системе наблюдается только при полном отсутствии химического взаимодействия между компонентами. Если такое взаимодействие при образовании фазы возможно, то оно приводит к возникновению и физически и химически однородной однофазной системы. Например, смесь газообразного оксида азота и кислорода физически однородна. Если бы эти газы пе взаимодействовали друг с другом, то их смесь была бы однофазной, но химически неоднородной (как воздух). Поскольку в системе возмол<но химическое взаимодействие, приводящее к образованию нового вещества (дыокспд азота НОг), то состояние термодинамического равновесия наступит тогда, когда система станет и физически и химически однородной. В-третьих, термодинамическое определение фазы предусматривает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе н от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важ[ю лишь соотношение между поверхностью и объемом. Например, фазой нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.302]

    Выделяющийся иод скрашиваег раствор в желто-коричневый цвет. Молекулярный иод можно эксфагировать из водной фазы хлороформом, бензолом и другими органическими растворителями, не смешивающимися с водой, в которых молекулярный иод растворяется лучше, чем н воде. Органический слой окрашиваеи я и фиолетовый цвет, а водный — в светло-коричневый. [c.454]

    Жидкие мембранные электроды — растворы ионных ассоциатов в органических растворителях. В качестве растворителей используют обычно различные эфиры, например октиловый или дециловый эфиры фосфорной кислоты, дибутилфосфат и др. Потенциал-образующими ионами являются катионы или анионы ионных ассоциатов, т. е. электрод с катионоанионным ассоциатом чувствителен и к катионам, и к анионам, входящим в состав ассоциата. Для уменьшения растворимости ассоциата в водной фазе, т. е. для удержания его в основном в фазе органического растворителя, обычно применяют ассоциаты потен-циалобразующих ионов с противоионами большой молекулярной массы, что обеспечивает достаточно [c.476]

    Понятие о твфдой фазе. Термодинамическое определение фазы (см. 9 гл. II) включает следующие основные положения. Во-первых, подразумевается, что система находится в состоянии термодинамического равновесия. Во-вторых, каждая фаза, составляющая систему, должна быть физически однородной ее частью. При этом химическая однородность фазы не обязательна. Примерами физически однородных (однофазных), но химически неоднородных систем являются воздух — молекулярный раствор газов, не взаимодействующих друг с другом, молекулярные водные растворы неэлектролитов и т.п. В-третьих, термодинамическое определение фазы предполагает наличие межфазной границы раздела — поверхности, отделяющей данную фазу от всех остальных фаз в системе и от окружающего пространства. Поверхностный слой фазы находится в иных условиях по сравнению с объемом и обладает избыточной свободной энергией. Вследствие этого свойства поверхности отличаются от свойств вещества в целом. Поэтому понятие фазы применимо к макроскопическим объектам, для которых объемные свойства являются определяющими. Если поверхностными свойствами по сравнению с объемными пренебречь нельзя (что наблюдается, например, в тонких пленках), то классическое понятие фазы становится неприменимым. При этом не имеет значения абсолютное количество вещества в объеме данной фазы, важно лишь соотношение между поверхностью и объемом. Например, фазой в термодинамическом смысле нельзя считать тонкую масляную пленку на поверхности воды, хотя общая масса этой пленки может быть значительной. [c.185]

    Влияние электролитов, температуры и природы органической фазы на молекулярное взаимодействие. Влияние температуры на молекулярное взаимодействие было исследовано в черных пленках, полученных из М раствора ксилана-0 в ундекане (водная фаза — 5-10- ЛГ раствор Na I). Поскольку толщина и разница натяжений в интервале температур 15—50° С практически не изменились, сделан вывод, что ван-дер-ваальсовское взаимодействие в этом температурном интервале было одинаковым. [c.139]

    В расплаве при поликонденсацни на границе разде1а фаз точное стехиометрическое соотношение реагирующих компонентов не столь важно, так как реакция межфазной поликон енсации протекает с большой скоростью. Фактически в некоторых случаях может употребляться достаточно большой избыток диамина, действующего как акцептор кислоты, и это не вызовет значительного уменьшения молекулярного веса продукта. Это обстоятельство принимают как доказательство того, что реакция протекает в органической фазе близко к границе раздела, независимо от избытка диамина, Хлоран-гидрид проникает в водную фазу в очень незначительном количестве, и, таким образом, гидролиз исключается. [c.103]

    Введение в состав маслорастворимого эмульгатора, его углеводородного раствора или водную фазу содетергена, например, спирта, который усиливает сродство ПАВ к водной фазе, снижает его ККМ, способствует улучшению молекулярной диффузии через межфазную границу и разжижает адсорбционный слой. Такой путь регулирования межфазного натяжения, как правило, используют при составлении композиций микроэмульсий. Обратные же эмульсии, по данным Б.А. Рашкован, будут повышать свою дисперсность лишь на этапе получения. Однако в дальнейшем их агрегативная стабильность будет резко снижаться во [c.54]

    Для практики важно установить возможность иопользования прямых мицеллярных растворов с внешней водной фазой, которые характеризуются, в частности, меньшим расходом ценной углеводородной составляюшей раствора. Ниже приведены данные о вытеснении нефти прямыми мицеллярными растворами. Из1мерения проводились на модели пласта (песчаник пористостью 17,4—20,5%, проницаемостью 0,323 мкм ) длиной 122 см и диаметром 8 см с остаточной после обычного заводнения нефтенасыщенностью 32,9—36,5%- Оторочка мицеллярного раствора, состоящая из 80,5% пластовой воды (412 мг/л растворимых солей, pH = 7,6—8,0), 9,2% сырой нефти, 8,7% ПАВ (алкиларилсульфонат со средней молекулярной массой 440), 1,6% содтергента (1,1% амилового спирта и 0,5% изопропилового спирта), проталкивалась полимерным раствором в количестве 120% от объема порового пространства модели пласта. Оторочки объемом 1 2 4 и 5% обеспечивали коэффициент извлечения остаточной нефти соответственно 48,5 43,2 93,8 и 85,6, т. е. оторочка с внешней водной фа13ой размером 4—5% от объема пор позволяет вытеснить основную часть оставшейся после заводнения в неслоистой модели пласта нефти. Указанный экопериментальный результат свидетельствует не только сам (ПО себе о целесообразности применения прямых мицеллярных растворов, но и об ограниченности отрицательного эф- [c.182]

    Последняя величина—термодинамическая константа, как и и не зависит от концентрации хлорнд-иона Другими словами, если твердый хлорид находится в равновесии с водной фазой, мы всегда имеем в растворе 10 моль/л молекулярного Ag l. Теперь мы можем рассчитать Кв для гетерогенных равновесий, устанавливающихся в растворе  [c.213]


Смотреть страницы где упоминается термин Молекулярный вес и pH водной фазы: [c.595]    [c.148]    [c.148]    [c.47]    [c.28]    [c.523]    [c.17]    [c.138]    [c.164]    [c.69]    [c.65]    [c.157]    [c.353]    [c.87]    [c.474]   
Поликонден (1966) -- [ c.181 , c.235 ]




ПОИСК







© 2025 chem21.info Реклама на сайте