Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двуокись углерода получение и свойства

    Краткая характеристика элементов подгруппы углерода. Углерод. Аллотропные видоизменения углерода. Древесный уголь. Поглотительная способность угля. Активированный уголь и его применение. Двуокись углерода, получение, свойства и применение. Угольная кислота и ее соли. Окись углерода. Твердое, жидкое и газообразное топливо. [c.198]


    Как получают двуокись углерода (угольный ангидрид) в лабораториях ив технике Из каких природных веществ он может быть получен Укажите физические свойства двуокиси углерода, ее отношение к воде и щелочам и области ее практического применения. [c.231]

    Этиловый спирт используется также для производства спиртных напитков. Для этих целей его получают ферментативным гидролизом сахара, выделяемого из различных растительных источников. Свойства напитков зависят от сырья, используемого для ферментативного гидролиза (рожь или пшеница, виноград или ягоды бузины, мякоть кактусов или одуванчиков), метода проведения гидролиза (например, улетучивается двуокись углерода или нет) и метода обработки продукта гидролиза (перегоняется спирт или нет). Специфичный аромат напитков обусловлен не этиловым спиртом, а другими веществами, имевшимися в исходном сырье (используемом для получения спирта), или специальными добавками. [c.485]

    Гликоли и диамины играют важную роль в качестве сшивающих агентов в производстве полиуретановых эластомеров. Выделяющаяся двуокись углерода используется как вспениватель. Свойства полиуретанов, полученных этим методом, зависят как от природы исходных соединений, так и от условий реакции. [c.230]

    В применяемом для получения сажи сырье обычно содержится до 2,5% серы, входящей в состав ароматических углеводородов сырья. Очистка сырья от серы является сложной, дорогостоящей операцией, кроме того, она ухудшает свойства сырья, так как при очистке вместе с серой из него извлекается часть ароматических углеводородов. В процессе сажеобразования из сернистых соединений, содержащихся в сырье, образуется сероводород. При охлаждении в холодильниках смешения саже-газовой смеси сероводород частично окисляется в двуокись серы. В аппаратуре улавливания сажи, шнеках и трубопроводах пневматического транспорта часто происходит конденсация водяного пара, находящегося в саже-газовой смеси. Двуокись серы, а также содержащаяся в газах двуокись углерода растворяются, образуя сернистую и угольную кислоты. Эти кислоты реагируют с , Сталлом аппаратуры и вызывают и.х коррозию. Коррозия аппаратуры для большинства аппаратов саже- [c.280]

    Используя свойства цеолитов одновременно адсорбировать пары воды и двуокись углерода, можно решить очень важную для промышленности задачу получения заш итных атмосфер, необходимых для обработки металлов, спекания металлокерамики, специальной пайки и т. д. Применение контролируемых защитных атмосфер позволяет регулировать содержание углерода в поверхностном слое стальных изделий и повышать усталостную прочность и долговечность деталей. [c.54]


    Соединения, содержащие, наряду с карбоксильной группой, спиртовые или фенольные гидроксильные группы, называются оксикислотами. В зависимости от положения оксигрупп (o - - и т. д. или о-,м-,п-) оксикислоты обладают различными свойствами. Если присутствие карбоксильной группы доказано, то наличие в веществе гидроксильных групп устанавливают описанными ранее реакциями (стр. 318). Иногда бывает необходимо предварительно защитить карбоксильную группу, например, этерифицируя ее, и только после этого проводить обычные реакции обнаружения гидроксильной группы. Получение ацильных соединений может быть затруднено тем, что оксикислоты иногда взаимно этерифицируются. Некоторые ароматические фенолкарбоновые кислоты при нагревании выделяют двуокись углерода из карбоксильной группы в это М случае гидроксильную группу обнаруживают реакциями, предложенными для обнаружения фенолов. [c.519]

    Открытие газов и изучение их свойств относятся к ранним этапам развития химии. Как уже отмечалось ранее, впервые термин газ применил Ван Гельмонт. Приблизительно в 1630 году он описал двуокись углерода, которую назвал лесным газом , хотя другие исследователи применяли название связанный воздух . Ван Гельмонт считал, что газ не может находиться в сосуде, однако Роберт Бойль позднее продемонстрировал, что газ можно собирать. В 1754 году Джозеф Блек подробно описал получение и свойства связанного воздуха (двуокиси углерода). Кавендиш, которому приписывают открытие водорода в 1776 году, разработал множество приборов для получения, собирания и хранения газов. [c.104]

    Впервые в промышленных масштабах окисленные нефтяные битумы начали производить в 1844 г. по предложению Ж. Г. Биерлея [429] путем барботажа воздуха через слой нефтяных остатков при 204 и 316 °С. В зависимости от температуры и продолжительности процесса получали битумы различных свойств продукт этот был назван биерлитом . В России окисленный битум был впервые получен в 1914 г. в г. Грозном. Развитие производства окисленных битумов в СССР началось с 1925 г. в г. Баку. Современная технология заключается в окислении нефтяных остатков кислородом воздуха без катализатора при температуре 230—300°С с подачей 0,84—1,4 м мин (0,014—0,0233 м 1сек) воздуха на 1 т битума при продолжительности до 12 ч (43,2 ксек). Воздух может подаваться в реактор под давлением или всасываться благодаря вакууму в системе до 500 мм рт. ст. (66 661 н/м ). Отгон и потери зависят от содержания летучих веществ в сырье, глубины окисления и находятся в пределах 0,5—10 вес.% от сырья. Пары воды и двуокись углерода выводятся из системы. Экзотермическая реакция окисления повышает температуру в зоне реакции. [c.105]

    При обработке этого соединения полиизоцианатом образуются сшитые полимеры. Если к реакционной смеси добавить небольшое количество воды, то часть уретановых групп превращается в реакционноспособные амидогруппы, причем выделяется двуокись углерода. Подбирая условия проведения процесса, можно использовать этот газ для вспенивания полимеризационной смеси с образованием пенопласта. Свойства полученных полимеров можно изменять в очень широких пределах путем варьирования отношения полиэфира (простого или сложного) к полиизоцианату и природы полиола. Кроме того, добавление различного количества воды с последующей реакцией изоцианата с образовавшимися амидогруппами приводит к получению по-лиуретано-полимочевинных продуктов с новым комплексом свойств. [c.276]

    Изонитрозопроизводные (оксиминопроизводные). — Виктор Мейер (1883) провел следующий опыт. Он растворил на холоду ацетоуксусный эфир в сильно разбавленном едком кали (1 экв), прибавил нитрит калия (1 экв), а затем при охлаждении подкислил раствор серной кислотой вскоре после этого он вновь подщелочил раствор, извлек эфиром неизмененный ацетоуксусный эфир (обладающий лишь слабокислыми свойствами), подкислил водный слой и эфиром экстрагировал кислый продукт реакции — изонитро-зоацетоуксусный эфир (оксим). Это вещество, представлявшее собой бесцветное масло, имело ожидаемый состав, но несколько его порций не удалось закристаллизовать даже при —25°С. Однако кристаллы появились в образце, полученном несколькими месяцами ранее, и при внесении затравки в свежую порцию жидкости все вещество через 1—2 дня закристаллизовалось, образовав необыкновенно хорошо оформленные призмы сантиметровой толщины (т. пл. 54 °С). Это бесцветное изонитрозосоединение растворяется в щелочи с образованием желтого раствора, при нагревании и последующем подкислении которого выделяется двуокись углерода и образуется изонитрозоацетон, бесцветное в твердом виде и желтое в щелочном растворе вещество (т. пл. 69 °С)  [c.569]

    С совершенствованием техники получения высоких и сверхвысоких давлений стало возможным не только проводить исследования состояния вещества при давлениях порядка десятка тысяч атмосфер, но и осуществлять при таких условиях химические процессы. При давлении 10 ООО атм объем газа уменьшается примерно в 500 раз по сравнению с объемом при нормальном давлении и той же температуре. Во столько же раз возрастает плотность газа, и по своей внутренней структуре газ становится больше похож на жидкость, чем на газ при обычных условиях существования. Высокие давления изменяют свойства вещества в том же направлении, что и низкие температуры, И некоторые газы способны переходить в газокристаллическое состояние, в котором их молекулы располагаются друг относительно друга в определенном порядке, упаковываясь в кристаллические структуры, но не вследствие большого взаимодействия между ними (как в твердом веществе), а из-за недостатка свободного пространства. Например, гелий, двуокись углерода, хлорид фосфония (РН4С1) при очень высоких давлениях переходят в газокристаллическое состояние. Даже при температурах до 93° С СОа находится в газокристаллическом состоянии, если давление равно 12 ООО атм. [c.104]


    В результате выполненных расчетов получены области воспламенения флегматизированных различными газами эндо- и экзотермической контролируемых атмосфер [33, 35]. Из их анализа следует, что двуокись углерода по отношению к эндогазу обладает существенно лучшими флегматизирующими свойствами, чем азот. Отношение объема азота к объему эндогаза в экстремальной точке области воспламенения более чем в 1,6 раза превышает соответствующее значение при разбавлении эндогаза двуокисью углерода. Экзогаз, полученный при а=1, по флегматизирующим свойствам несколько лучше азота, так как имеет в своем составе двуокись углерода. [c.17]

    Тантал легко поддается холодной деформации, но деформации в горячем состоянии следует избегать, так как при нагреве металл взаимодействует с такими газами, как кислород, азот и двуокись углерода, в результате чего охрунчивается. Можно применять обработку резанием, но для получения при этом хорошего качества поверхности необходимо принимать особые меры. Высокая прочность, хорошая обрабатываемость и отличная коррозионная стойкость тантала позволяют изготовлять детали с очень тонкими стенками. Толщина обычно используемого в химическом оборудовании материала составляет 0,33 мм. Перечисленные свойства в сочетании со способностью поверхности тантала ускорять процессы образования пузырьков пара при нагревании жидкостей, а также формирования капель при конденсации паров делают этот металл идеальным конструкционным материалом для теплообменного оборудования, работающего в сильных кислотах. [c.203]

    Требования к чистоте этилена. В результате подробных и точных работ Цорна и его сотрудников стало известно, что удовлетворительное проведение нолимеризации и свойства смазочных масел зависят от чистоты этилена [53]. В этилене должны совершенно отсутствовать кислород и сера, а также их соединения, окись углерода, двуокись углерода, сероводород, сероокись углерода, меркаптаны, альдегиды, спирты, эфиры и т. п. В техническом этилене в зависимости от его происхождения такие загрязнения содержатся в большем или меньшем количестве, часто только в следах. Так, при дегидратации этилового спирта всегда образуется некоторое количество ацетальдегида, который, правда, содержится в очень незначительных количествах и может быть обнаружен лишь тончайшими аналитическими средствами. Однако этого количества уиге достаточно, чтобы оказать отрицательное влияние па процесс нолимеризации, вследствие чего качество или выход продуктов полимеризации или оба фактора одновременно ухудшаются. Совершенно незначительные количества окиси или двуокиси углерода, которые содержатся в этилене, полученном из коксовых газов или окислительным дегидрированием этана, сильно ухудшают вязкостно-температурные свойства полимера или немедленно подавляют процесс полимеризации вообще. Так, например, содержание 0,01% окиси углерода в этилене полностью подавляет полимеризацию. [c.595]

    Обращает на себя внимание различие в скоростях взаимодействия близких по химическому составу шихт. Скорости разложения окисно-карбидной смеси оказываются намного больше, чем оксикарбида ниобия. Это показывает, что условия получения исходных реагентов оказывают большое влияние на структурные свойства промежуточных продуктов. Из экспериментальных данных следует, что если смесь пятиокиси ниобия и сажи, взятых в стехиометрическом отношении на металл (NbjOg-j-S ), нагревать в атмосфере окиси углерода при 1500°, то в зависимости от продолжительности нагревания можно получить различные конечные продукты. Если скорость нагрева высокая, а продолжительность выдержки небольшая (5—10 минут), то конечные продукты взаимодействия в основном содержат двуокись и карбид ниобия (NbOjH-Nb J, причем этот состав, как показали предыдущие исследования [ ], имеет место в довольно широком температурном интервале (1400—1800°). При длительных выдержках фазовый состав меняется в результате взаимной диффузии атомов кислорода и углерода в решетках карбида и окисла в конечных продуктах при атмосферном давлении окиси углерода образуется оксикарбид ниобия с кубической решеткой. Разложение иослед- [c.235]

    В ходе экспериментов Пристли получал кислород нагреванием окиси ртути или селитры в замкнутом сосуде, используя линзу для фокусировки солнечных лучей. Ему пришла гениальная мысль применить в аппарате Гейлса в качестве запирающей жидкости ртуть вместо воды. Благодаря этому он смог открыть хлористый водород, аммиак, окись азота, четыреххлористый кремний, двуокись серы и окись углерода. Пристли исследовал свойства всех этих газов. Он был блестящим химиком-практиком, но теоретические возможности сделанных им открытий часто ускользали от него. Тем не менее однажды, описывая способ получения кислорода, он заявил [ИЗ] Эта серия действий, относящихся к экстракции воздуха, представляется очень необычной и важной и в умелых руках может привести к значительным открытиям . [c.60]

    Низший из этих окислов по кислороду МпО может быть приготовлен различными путями. Так, двуокись марганца и высшие скислы этого металла могут быть восстановлены до МпО окисью углерода и водородом, причем восстановление начинается 0 260 я идет энергично при температуре 800—900°, Закись марганца МпО получается также при разложении щавелевокислого или углекислого марганца при нагревании окислением марганца окисью углерода или восстановлением МП3О4 углеродом в интервале температур 700—900°. Закись марганца, полученная восстановлением или разложением углекислой соли в атмосфере водорода, имеет темнозеленыи цвет восстановленная при 260° и затем выдержанная при 140° в водороде закись марганца об ладает пирофорными свойствами, но на воздухе этот окисел сохраняется неизменным при обыкновенной температуре и окисляется до МП3О4 или МП2О3 при нагревании. Водяные пары также окисляют его, но в углекислоте он может нагреваться до 250° без образования углекислой соли. [c.545]


Смотреть страницы где упоминается термин Двуокись углерода получение и свойства: [c.19]    [c.652]    [c.9]    [c.118]    [c.17]    [c.515]    [c.19]    [c.566]    [c.574]    [c.595]   
Мочевина (1963) -- [ c.60 , c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Двуокись получение

Двуокись углерода, свойства

Углерод получение

Углерод свойства

получение и свойства



© 2025 chem21.info Реклама на сайте