Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Давление паров воды над щелочными

    В ряду сходно построенных 8-электронных катионов устойчивость ЭОН изменяется весьма закономерно, понижаясь с увеличением заряда катиона и уменьшением его радиуса. Так, гидроокиси щелочноземельных металлов отщепляют при нагревании воду уже гораздо легче, чем гидроокиси соответствующих щелочных, и т. д. В подгруппах периодической системы термическая устойчивость ЭОН при переходе сверху вниз быстро возрастает, как это видно, например, из приводимого ниже сопоставления температур, при которых давление паров воды [образующейся при распаде по схеме Э(ОН)г = НаО -f ЭО] над гидроокисями становится равным 760 мм рт. ст.  [c.293]


    Среди галогенидов щелочных металлов Rbl и sl обладают при высокой температуре наибольшим давлением пара, но их возгонка на воздухе сопровождается частичной диссоциацией — выделяется иод [10]. Rbl и sl — негигроскопичные соединения. Очень хорошо растворяются в воде. Выделяются из водных растворов в виде кубических кристаллов. Растворимость Rbl в воде (г/100 г Н2О) следующая [10] 124,8 (0°), 163 (25°), 183,4 (35,6°), 219 (59,4°), 271 (93°). Растворимость sl в воде (вес.%) [101] 27,6 (0°), 46,1 (25°), 50,82 (30°), 55,09 (40°), 58,30 (50°), 62,03 (60°), 64,95 (70°). На свету водные растворы Rbl и sl постепенно желтеют вследствие выделения иода. Под действием бромной воды, азотистой кислоты и других окислителей легко выделяется иод даже из разбавленных растворов Mel. [c.104]

    Газы из электролизеров 1 поступают в газоотделители водорода 2 и кислорода 3, являющиеся общими для всех катодных и всех анодных ячеек. Здесь происходит частичное отделение паров воды и унесенных капель электролита. Далее водород и кислород поступают в холодильники 4, орошаемые водой, а затем в регуляторы давления газов 5. Последние служат для предотвращения перепада давлений в катодной и анодной ячейках электролизера, которое может привести к обнажению диафрагмы и передавливанию электролита из одного отделения в другое. Для регулирования давления используются поплавковые регуляторы, в которых одновременно происходит очистка охлажденных газов от щелочного тумана при барботаже их через слой воды, подаваемой из бака 8. [c.135]

    Кислая вода из сборника подается кислотоупорным центробежным насосом 25 (типа ХНЗ-3/25, производительность 5—20 м /ч, напор 9—19 ж) в два поочередно работающих напорных бака 26, емкостью 5 д каждый. Отсюда кислая вода самотеком поступает в один из двух периодически действующих однокорпусных вертикально-трубчатых испарителей 27. Последние имеют стальной кожух и медную трубчатую систему. Поверхность теплообмена каждого испарителя 25 м , загрузочная емкость 360 л. Как только трубное пространство испарителя на две трети по высоте заполнится кислой водой, в межтрубное пространство начинают подавать водяной пар. Постепенно давление пара повышают и к концу процесса доводят его до 9—12 ати. По мере упаривания растворимой смолы испаритель доливают кислой водой. В течение одной операции это производится четыре-пять раз. Выделяющиеся из испарителя пары кислой воды переходят в сепаратор. 28 и далее в конденсатор-холодильник 29, откуда кислый конденсат стекает в сборник нейтрализованного раствора, где, как уже упоминалось, используется для нейтрализации избыточной щелочности раствора ацетата кальция. Сепаратор—медный, емкостью 1,6 л холодильник — вертикально-трубчатый с поверхностью охлаждения 30 м, , трубки медные, кожух стальной. [c.161]


    В качестве примера локальной установки, в которой используется азеотропная отгонка летучих веществ из сточиых вод, рассмотрим установку для очистки сточных вод, образующихся при синтезе хлорпроизводных метана (метиленхлорида). Веточных водах производства метиленхлорида содержатся, помимо основного продукта, хлороформ, четыреххлористый углерод, а также 1,2-дихлорэтан и тетрахлорэтан. Поскольку сточные воды образуются при отмывке реакционных газов 8—10%-пым раствором щелочи, они и.меют щелочную реакцию. Из этих сточных вод методом азеотропной отгонки выделяют хлорметаны на колонне эффективностью 25 теоретических тарелок. Температура пара на выходе из колонны 94—100°С. Расход пара около 300 кг/мз воды. Давление пара 120—160 кПа. В воде после азеотропной отгонки остается от 17 до 150 мг/л хлорорганических веществ, преимущественно высококипящих. Поэтому после азеотропной отгонки сточные воды производства хлор-метанов подвергают дальнейшей доочистке активным углем. [c.269]

    Гели кристаллизуются в закрытых гидротермальных системах, обычно при температурах от комнатной до 175 °С. В некоторых случаях используются и более высокие температуры, до 300 "С. Давление обычно соответствует давлению насыщенных паров воды при данной температуре. Длительность кристаллизации изменяется от нескольких часов до нескольких дней. Полученные алюмосиликатные гели сильно различаются по внешнему виду это могут быть плотные полупрозрачные вещества, непрозрачные желатинообразные осадки и гетерогенные смеси аморфных твердых тел, диспергированных в водном растворе. Щелочные металлы образуют растворимые гидроокиси, алюминаты и силикаты и поэтому весьма удобны при приготовлении гомогенных смесей [И, 14]. [c.262]

    В 1927 г. Леонард из5 ил гидротермальную реакцию между полевыми шпатами и щелочными карбонатами в результате 7-дневного нагревания исходной смеси при 200 °С и 15 атм образовывались морденит и томсонит [1]. Кроме того, он сообщил,чта получил цеолит типа филлипсита из полевого шпата, нагревая последний при 350 °С в присутствии фторидов и перегретых паров воды при атмосферном давлении. Хотя Леонард один из= первых применил рентгенографию для характеристики продуктов синтеза, полученные соединения не были идентифицированы однозначно. [c.265]

    Технологическая схема производства водорода и кислорода электролизом воды сравнительно проста. Кроме основной стадии разложения воды она включает несколько вспомогательных стадий, необходимых для обеспечения питания электролизеров постоянным током, для очистки питающей воды и приготовления электролита. При повышенных требованиях к чистоте газов электролиза схема дополняется стадиями очистки водорода и кислорода от щелочного тумана и взаимных примесей и осушки газов для удаления паров воды, унесенных из электролизеров и образовавшихся при каталитической очистке. Ниже описаны два наиболее характерных варианта технологической схемы электролиза воды примерная промышленная схема производства большой мощности с использованием крупных фильтрпрессных электролизеров ФВ-500 (на 500—650 м ]ч водорода), работающих при небольшом избыточном давлении, и схема средних и малых установок электролиза воды, обычно работающих под давлением 10 ат и, как правило, снабженных оборудованием для каталитической очистки и осушки газов. Однако первый вариант схемы не исключает возможности каталитической очистки и осушки газов. И наоборот, во втором варианте схемы эти стадии могут отсутствовать, если в них нет необходимости. [c.191]

    Гидроокись кальция. Гашеная известь Са(ОН)г— продукт присоединения воды, к окиси кальция, образует"белого цвета пылеобразный аморфный порошок удельного веса 2,08. Са(ОН)г теряет воду только при температуре выше 100°. Давление пара НгО над гидроокисью кальция достигает 1 атм лишь при 450°. В воде Са ОН)а растворяется довольно трудно, с неболь,шим положительным тепловым эффектом (2,8 ккал). Присутствие солей щелочных металлов, и особенно хлористого аммония, несколько повышает ее растворимость. Водный раствор гидроокиси кальция известковая вода) имеет сильно щелочную реакцию, но все же более слабую, чем эквимолярный раствор гидроокиси калия. При реакции с тростниковым сахаром Са(ОН)г образует сахараты, которые могут содержать 1—6 молекул СаО на 1 молекулу тростникового сахара. Поэтому гидроокись кальция растворяется в растворах тростникового сахара гораздо лучше, чем в чистой воде так, в 100 сж 8%-ного раствора тростникового сахара растворяется 22,4 а СаО. Растворимость же ее в чистой воде составляет  [c.294]


    Едкая щелочь (КОН), осч, 40—50%-ный раствор или аммиак, очищенный изопиестическим способом, т. е, уравнением давлений паров над двумя растворами. Для этого на дно тщательно вымытого эксикатора наливают 25%-ный аммиак, а на фар- форовый круг ставят кварцевую чашку с очищенной водой, эксикатор закрывают плотно крышкой и оставляют на 2—3 дня. Пользуются раствором из кварцевой чащки. Воду, очищенную на ионообменной колонке, перегоняют в кварцевом аппарате с перманганатом в щелочной среде. Посуду следует применять кварцевую после пропаривания в течение 2—3 час. [c.253]

    Химическое стекло устойчиво в органических, а также в нейтральных и большинстве кислых водных растворов. Растворы фосфорной и плавиковой кислот разрушают его. Резко понижена стойкость стекла в щелочных растворах. Так называемое молибденовое стекло довольно быстро разъедается растворами, содержащими иод (в частности, при кристаллизации КЮз). Нужно заметить,что скорость растворения стекла резко растет с увеличением температуры. Интенсивность разрушения увеличивается в 1,5—2,5 раза на каждые 10° С в интервалетемператур до 100°С. Совершенно непригодно стекло для температур свыше 150—200° С при повышенном давлении паров воды. В этом случае растворение сопровождается быстрой раскристаллизацией стекла, фиксируемой по его помутнению. Характеристика устойчивости лабораторного стекла имеется у С. К. Дуброво [1965 г.]. [c.183]

    Успешное проведение плавки во многом зависит от консистенции массы, находящейся в аппарате. Наиболее подвижная консистенция достигается в тех случаях, когда в качестве щелочных агентов применяются не расплавленные щелочи, а растворы щелочей. Однако при этом реакционный аппарат должен работать под давлением. Величина его соответствует давлению паров воды при данной температуре. Поддержание подвиншой консистенции плава при применении для плавки щелочных растворов может быть достигнуто также при наличии обратного холодильника, который возвращает в аппарат испарившуюся воду и этим позволяет поддерживать требуемую консистенцию раствора без применения автоклава. [c.249]

    Предложена (а. с. 345103 СССР) сорбционная доочистка сточных вод, содержащих производные смл<л -триазина (меламин, аммелин, аммелид, циануровую кислоту). Производные симм-тршзиш находятся в маточнике, образующемся в процессе выделения и перекристаллизации меламина или циануровой кислоты. В щелочной среде при нагревании до 80—100 °С эти соединения гидролизуются с образованием циануровой кислоты. Для удаления последней сточные воды обрабатывают щелочью при 120-200 °С под давлением, равным или превышающем давление паров воды при температуре обработки. При этом циа-нуровая кислота полностью гидролизуется с образованием МНз, СОг, НзО. Образующийся аммиак можно использовать в производстве. Описанным методом можно очищать сточные воды при содержании в них производных гал<л<-триазина 1—2 г/дм. Если же их содержание превышает 10 г/дм, следует предварительно снизить pH. При этом осаждается большая часть аммелина и аммелида. Меламин при добавлении циануровой кислоты осаждается в виде цианурата. Применение этих приемов позволяет выделить часть производных симм-тртза-на и использовать их в производстве циануровой кислоты. Остаточные количества кислоты после такой обработки удаляют сорбцией на твердых сорбентах. [c.148]

    В стеклянных волокнах щелочные катионы могут мигрировать через очень тонкий слой, всего в несколько молекул толщиной и миграция может происходить при более низких температурах, чем в случае массивных образцов стекла. Естественно, что миграция щелочных катионов па поверхность стеклянных волокон приводит к значительному снижению их физико-механических свойств, особенно в условиях повышенной влажности. Исследованиями Н. Н. Семенова и Н. М. Чиркова [130] установлено, что стекла не обнаруживают электропроводности в парах дистиллированной воды, но в присутствии даже ничтожных количеств щелочей или кислот выявляется заметная электропроводность, которая увеличивается с ростом давления паров воды. Поверхностная электропроводность стекол начинает изменяться уже выше 50%-ной относительной влажности воздуха и даже для стеклянных волокон алюмоборокальциевосиликатного (бесщелочного) состава влияние высокой влажности приводит к значительному снижению их диэлектрических характеристик. Что же касается стеклянных волокон щелочного состава, то наряду с резким снижением диэлектрических свойств в условиях высокой влажности происходит фактически разрушение поверхности тонких волокон. [c.322]

Рис. 7.2. Схема трехступенчатого синтеза углеводородов при среднем давлении в газовой фазе 1-компрессор 2-реактор первой ступени 3-насос циркуляционной воды 4-сепараторы 5-парафиноотделите-ли 6-градирня 7-нейтрализаторы 8-конденсаторы 9-газгольдер 10-подогреватели газа 11-реактор второй ступени 12-реактор третьей ступени 13-абсорбер 1-синтез газ П-охлаждающая вода Ш-парафин и тяжелое масло 1У-парогазовая смесь У-пар VI-щелочной раствор УП-масло и щелочной раствор УШ-теплоно-ситель 1Х-свежее масло Х-насыщенное масло Х1-остаточный газ Рис. 7.2. Схема <a href="/info/315795">трехступенчатого синтеза углеводородов</a> при <a href="/info/145787">среднем давлении</a> в <a href="/info/3194">газовой фазе</a> 1-компрессор 2-<a href="/info/891867">реактор первой</a> ступени 3-<a href="/info/1682160">насос циркуляционной воды</a> 4-сепараторы 5-парафиноотделите-ли 6-градирня 7-нейтрализаторы 8-конденсаторы 9-газгольдер 10-<a href="/info/34078">подогреватели газа</a> 11-реактор <a href="/info/264629">второй ступени</a> 12-реактор <a href="/info/1532666">третьей ступени</a> 13-абсорбер 1-синтез газ П-охлаждающая вода Ш-парафин и <a href="/info/308786">тяжелое масло</a> 1У-<a href="/info/957619">парогазовая смесь</a> У-пар VI-<a href="/info/6286">щелочной раствор</a> УП-масло и <a href="/info/6286">щелочной раствор</a> УШ-теплоно-ситель 1Х-<a href="/info/1867271">свежее масло</a> Х-<a href="/info/406223">насыщенное масло</a> Х1-остаточный газ
    Диметилформамид (диэлектрическая постоянная 37) хорошо растворяет большое число полярных и неполярных органических соединений. Он также должен хорошо растворять многие неорганические перхлораты, особенно щелочных и щелочноземельных металлов, иодиды щелочных и щелочноземельных металлов и хлористый литий. Остальные хлориды растворимы умеренно растворимы и нитраты, но они разлагаются. Особый интерес к ДМФ был проявлен со стороны полярографистов, так как в нем можно измерять потенциалы полуволн ряда активных металлов, чего нельзя сделать в водных растворах, а также вследствие лучшего по сравнению с водой поведения капельного ртутного электрода в ДМФ при высоких катодных потенциалах [4]. ДМФ находится в жидком состоянии в удобной для работы области температур (от -61 до +153°С). Имеет низкое давление паров при комнатной температуре. Это обстоятельство облегчает обращение с растворителем в открытых сосудах, но осложняет процесс перегонки. ДМФ можно использовать в качестве среды в аб-сорбциодной спектроскопии в видимой и ближней ультрафиолетовой областях спектра (ниже 270 нм). ДМФ сильно раздражает кожу, глаза и слизистую обо-лочку. Вдыхание паров с концентрацией 1 10 % ДМФ представляет опасность для жизни животных. [c.15]

    ГИДРОКСИЦИТРОНЕЛЛАЛЬ (7-гидрокси-3,7-диметил-октаналь) (СНз)2С(ОН) СН2)зСН(СН)зСН2СНО, мол. м. 172,26 бесцв. вязкая жидкость, обладающая запахом свежей зелени с оттенком запаха цветов липы и ландыша т. кип. 262°С, 116°С/5 мм рт. ст. 1° 0,9220, 6 1,4494 давление пара 346 МПа (20 С) растворим в этаноле, плохо-в пропиленгликоле, почти не растворим в воде. Быстро окисляется на воздухе, неустойчив в кислой и щелочной средах. [c.560]

    Затем массу выгружают из реактора в аппарат 16 для отгонки тетраэтилсвинца. Предварительно в аппарат 16 подают измельченную серу и хлорное железо, которые являются противокомкующими средствами. Хлорное железо снижает щелочность шлама и улучшает его консистенцию за счет образования коллоидного раствора гидроокиси железа измельченная сера равномерно распределяется в шламе, улучшая его консистенцию и препятствуя слипанию частиц свинца. Отгонку тетраэтилсвинца из реакционной массы ведут, пропуская через нее острый пар. В начале отгонки избыточное давление пара равно 0,2—0,4 ат, но далее оно увеличивается и может быть доведено до 1—2 ат. Температура пара не должна превышать 130 С. Отгоняющиеся пары тетраэтилсвинца и воды поступают в холодильник 6, где они конденсируются, и стекают в мерник 7. Там благодаря разности плотностей водный конденсат отделяется от тетраэтилсвинца и стекает через ловушку 13 в канализацию. Отогнанный тетраэтилсвинец отсасывается в мерник 8 и далее поступает на обработку водой и воздухом. [c.322]

    При проверке чистоты вещества помимо элементного анализа пользуются определением физических постоянных, если соответствующие величины, а возможно, и их зависимость от температуры точно известны. Наибольшее распространение в лабораторной практике имеют определения температуры плавления, плотности, показателя преломления и давления пара. Если эти методы неприменимы, то можно в качестве испытания на однородность подвергнуть вещество операциям разделения. Для этой цели применяют прежде всего не требующие значительных затрат времени методы газовую, тонкослойную хроматографию нлн хроматографию на бумаге. Высокой чувствительностью по отношению к примесям обладают спектроскопические методы. При этом для характеристики жидкостей (например, растворителей, см. разд. 6) и растворенных веществ наиболее важны электронные спектры. Полезно иметь также инфракрасный и масс-спектр, которые в соответствующем аппаратурном оформлении могут быть сняты для образцов в твердом, жидком н газообразном состоянии. Оба метода дают возможность проводить качественное и полуколнчественное определение примесей, что очень облегчает принятие решения о целесообразности дальнейшей очистки. Например, содержание воды в твердом препарате легко определяется по широким полосам поглощения при 1630 н 3400 см в ИК-спектре. Разумеется, в этом случае следует иметь в виду, что галогениды щелочных металлов, используемые при приготовлении таблеток для ИК-спектроскопии, гигроскопичны. Их применение для съемки гигроскопичных объектов или для определения воды возможно только после нх тщательной осушки и лишь прн полном отсутствии воздуха (отмеривание, растирание с веществом, наполнение пресс-формы проводятся в сухой камере). Другой возможностью является съемка суспензии вещества в сухом нуйоле или в другой подходящей жидкости. Подобные жидкости должны обладать достаточно высокой вязкостью и по возможности малым собственным поглощением в соответствующей области спектра. В качестве материала для изготовления окон кювет для съемки ИК-спектров газов и жидкостей применяют вещества, перечисленные в табл. 26. Если нет необходимости вести съемку в области ниже 600 см , то следует пользоваться сравнительно дешевыми монокристаллами хлорида катрня. Конечно, вещество не должно реагировать с материалом окон (при необходимости предваритель- [c.142]

    Энергия гидратации. Энергию, выделяющуюся при взаимодействии отдельного иона с молекулами воды, определяют путем измерения при различных температурах и давлениях распределения молекулярных масс гидратированных ионов, образующихся в газовой фазе при взаимодействии иона с парами воды. Соответствующий прибор в сочетании с масс-спектрометром после преодоления ряда технических трудкостей был разработан Кебарле с сотрудниками. Однако число ионов, для которых можно использовать этот метод, ограничено. Экспериментальные данные приведены на рис. 4.8. Для ионов щелочных металлов, ионов галогенидов и других абсолютное значение АНщп) непрерывно уменьшается с ростом п, и нет никаких расхождений с числами гидратации, определенными рентгенографически и методом ЯМР. Очевидно, что у этих ионов первая и вторая гидратационные сферы энергетически не отличаются. [c.213]

    Щелочь (КОН) поступает в цех в железнодорожных цистернах 1, откуда она центробежным насосом 2 подается в емкость 3 для хранения. Из емкости щелочь закачивается в смеситель 4 для приготовления песчано-щелочной суспензии. После закачки щелочи в смеситель при непрерывном перемешивании подается исходный кварцевый песок, содержащий не менее 95% 5102, из бункера 5 через весоизмеритель 6 по ленточному транспортеру 7. В смеситель поступает также промытый отработанный (вторичный) песок из сборника 15. Из смесителя 4 приготовленная суспензия (реакционная смесь) центробежным насосом 8 закачивается в автоклав 9 объемом 12 м при постоянно работающей мешалке автоклава. После подачи смеси автоклав герметизируется, и через барботеры в него подается пар. Давление пара в автоклаве при варке калиевого стекла поднимается до 1,15—1,20 МПа и поддерживается на этом уровне в течение варки за счет Кратковременной подачи пара через 10—15 мин. Реакционная смесь в автоклаве непрерывно перемешивается мешалкой. При Указанном давлении варка калиевого жидкого стекла протекает 8 течение 3,0—3,5 ч. При более низком давлении варка не допускается как не обеспечивающая получение продукта нужного качества, даже при увеличении времени варки. Затем давление в авто- Паве понижают и закачивают в него насосом из сборника 13 часть Чромывных вод для получения жидкого стекла заданной плотно- ти. Промывные воды образуются в сборнике при промывке отработанного (непрореагировавшего) песка. [c.171]

    Технологическая схема пароциркуляцнонной установки для обесфеноливания сточных вод приведена на рис. 12.24. Сточную воду, нагретую до кипения, направляют в сборник, откуда насосом подают в обесфеноливающий скруббер сверху. Скруббер разделен на две части диафрагмой, через которую пропущен соединительный патрубок. Верхняя часть заполнена деревянной хордовой, нижняя — металлической спиральной насадкой. Снизу а скруббер подают насыщенный водяной пар, который проходит через соединительный патрубок, контактирует с кипящей сточной водой, насыщается фенолами и рециркулируется при помощи вентилятора в нижнюю часть скруббера (поглотительную камеру). Периодически верхний ярус поглотительной камеры орошают 9—10%-ным горячим водным раствором едкого натра. Прн контакте пара со щелочью содержащиеся в нем фенолы превращаются в феноляты и задерживаются в щелочном растворе, а обесфеноленный пар через патрубок в диафрагме вновь поступает ш обесфенолнвание сточной воды. Нижний ярус поглотительной камеры орошается циркулирующим щелочным раствором фенолята, что увеличивает полноту обесфеноливания пара. Раствор фенолятов самотеком поступает в сборник, откуда насосом направляется ла переработку. Давление пара в скруббере 100 мм рт. ст. Оно поддерживается подачей пара в подогреватель. [c.1060]

    Поскольку при применявшихся давлениях частота столкновений между частицами имеет порядок 10 в сек., можно сделать вывод, что при столкновении с молекулами водорода или азота свободный метил не выводится немедленно из строя. Более поздние эксперименты показали, что носителями активных алкильных радикалов могут служить также многие другие газы, например, аргон, гелий, углекислота и даже пары воды I M. стр. 102). Но средняя продолжительность жизни метильног ) радикала должна в некоторой степени зав исеть от диаметр. реакционного сосуда, температуры и природы газа-носителя -. Можно сделать вывод, что в условиях опытов, первоначально проведенных Панетом, большинство процессов вывода метильных радикалов из строя было вызвано их рекомбинацией в этан на стенках сосуда. Удалось подсчитать, что в холодных стеклянных или кварцевых трубках метильные радикалы претерпевают в среднем 1000 столкновений со стенками трубки до того, как произойдет рекомбинация. При 500° С, с использованием гелия в качестве носителя, активность теряется только примерно прп одном из 10 000 столкновений со стенкой. Каждое столкновение метильного радикала с поверхностью свинца или сурьмы нри-1ЮДИТ, повидимому, к химическому соединению. В отличие от атомарного водорода (стр. 95) метильные радикалы не рекомбинируются каталитически на поверхностях платины, желез ,, меди или никеля, поскольку проволочки из этих металлов, по мощенные в струе газа около источника свободных радикалов, не нагреваются. Быстрые реакции происходят, однако, с щелочными металлами — литием, натрием и калием, а также с 1сталличсскими таллием, оловом, мышьяком и висмутом, для которых хорошо известны стабильные металлоорганические [c.142]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Четырехфтористый титан — чрезвычайно гигроскопичное твердое вещество (давление паров равно 1 ат при 184°С). Лучше всего получать его действием фтора на металл при 250 °С или на ДВУОКИСЬ титана при 350 °С можно, однако, приготовить Т1р4 также взаимодействием фтористого водорода и тетрахло-рида. Этот фторид растворяется в водной плавиковой кислоте, образуя раствор, содержащий ион Т из данного раствора легко получить умеренно растворимые соли щелочных металлов. Как и следовало ожидать, все эти соединения оказались диамагнитными, Калиевая соль , кристаллизующаяся из воды при температуре выше 50 °С, имеет ромбоэдрическую структуру, аналогичную КгОеРе каждый ион титана окружен шестью фторид-ионами, находящимися от него на расстоянии 1,917 А и расположенными в вершинах правильного октаэдра. Данная структура, определенная путем рентгеноструктурного анализа, была недавно подтверждена исследованием при помощи метода ядерного магнитного резонанса (ЯМР) , вероятно первым из проведенных с комплексными фторидами поскольку Р обладает ядерным моментом, этот метод приложим к изучению подобных соединений. Фторо-(IV) титанат калия может быть получен нагреванием при 300—350 °С в виде кристаллов, имеющих кубическую и гексагональную структуры , аналогичные соответственно К231Рб и КгМпРе. [c.96]

    Сигети наблюдал, что сравнение глин и пермутитов с различными щелочными и щелочноземельными катионами показало (при постоянном давлении пара) тем более высокое содержание воды, чем выше гидратация катиона (фиг. 341). При этом набл1одалось дополнительное влияние объема пор в пермутитах, обладающих более тонкими структурами геля, количество воды всегда было больше, чем в глинах. [c.339]

    Чтобы ответить на этот вопрос, во время нагревания бомбу слегка наклоняют в одну сторону, а при охлаждении— поворачивают в другую сторону. Если стекло было действительно жидким при высокой температуре, то во время нагревания оно собирается в нижней части тигля, в то время как сосуществующий весьма текучий раствор собирается и затвердеет в той части, которая при охлаждении была нижней. Необходимо прежде охладить нИжнюю часть бомбы, в которой находится тигель, чтобы быстро закалить содержимое тигля и отделить его от газовой фазы, находящейся над ним. Затем раствор охлаждается под давлением и растворы щелочных силикатов образуют прозрачные, гомогенные водосодержащие стекла, вполне твердые, если содержание воды не превыщало 25%. Если, однако, золотой тигель поместить в бомбе лишь немного ниже крышки, то тепло будет быстрее отниматься от стенок бомбы, нежели от пробы, в то время как пространство наполнится водяным паром. При этом произойдет внезапное уменьщение давления, вода бурно выкипит из раствора, а нелетучие компоненты вспучатся и одновременно затвердеют. Образуются очень пористые пемзообразные, почти безводные силикатные массы. Этот процесс аналогичен вспучиванию нагреваемых природных пемз или водных стекол , описанному Барусом (см. С. I, 192). Главное преимущество метода Мори состоит в том, что-он может быть использован при статическом исследовании фазовых равновесий. Этот метод гидротермальной закалки позволяет сохранить в неизмененном виде (по химическому составу) кристаллы и раствор, которые были стабильными при высоких температурах (раствор представлен водосодержащим стеклом). Если при постоянной температуре изменять содержание воды и состав силикатной смеси, то граиищу области образования некоторой кристаллической фазы можно определить в соответствии с теми же принципами, которые справедливы в отнощении обычного сухого метода закалки (см. В. I, ЦО и ниже). Если, кроме того, стекло взвесить, то определится количество адсорбированной воды, т. е. содержание воды в горячем расплаве. Таким образом, станет известным истинный состав равновесных растворов, насыщенных при данной температуре относительно определенной кристаллической фазы. [c.600]


Смотреть страницы где упоминается термин Давление паров воды над щелочными: [c.405]    [c.26]    [c.244]    [c.168]    [c.261]    [c.65]    [c.74]    [c.389]    [c.189]    [c.282]    [c.12]    [c.87]    [c.236]    [c.850]    [c.221]    [c.335]    [c.630]    [c.7]    [c.218]   
Производство водорода кислорода хлора и щелочей (1981) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Давление воды

Давление паров воды над щелочными растворами



© 2025 chem21.info Реклама на сайте