Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия щелочных металлов

    Фотоэлектрический эффект был открыт в 1887 г. Г. Герцем и вскоре же подробно изучен русским физиком А. Г. Столетовым. Явление это состоит в испускании электронов металлами, а также некоторыми полупроводниками (селен), при их освещении. Большинство металлов дает этот эффект лишь при их освещении ультрафиолетовыми лучами, обладающими большой энергией щелочные металлы, атомы которых легко отщепляют электроны, дают этот эффект и под действием более мягких лучей — лучей видимого света. По своей сущности это явление как бы обратно образованию электромагнитных излучений (лучей Рентгена) при действии катодных лучей (электронов) на металлы. [c.74]


    Из табл. 2.1 видно, что если в ряду гидроксидов щелочных металлов принять энергию гидратации иона цезия равной нулю, то от- [c.49]

    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    У элементов подгруппы меди первая энергия ионизации существенно выше, чем у s-элементов I группы. Это объясняется проникновением внешнего rts-электрона под экран (п—1) с(1 -электронов. Уменьшение первой энергии ионизации при переходе от Си к Ag обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Аи обусловлено проникновением 6з-электрона не только под экран 5 1 -электронов, но и под экран 4/1 -электронов. Что касается второй энергии ионизации [удаление электрона из (п—1) ( 1 -подслоя , то у всех трех элементов она близка и по значению заметно меньше, чем у щелочных металлов. [c.620]

    В табл. XII.5 не включено большое число литературных данных по реакциям атомов щелочных металлов с галоидами и галогенидами щелочных металлов [58—60], полученных Поляни методом диффузионных пламен . Причиной этого явилось то, что данные по этим реакциям не могут быть использованы для непосредственного расчета значения абсолютных констант скорости и энергий активации. Кроме того, необходимо сделать допущения относительно кинетики перекрестных реакций и констант диффузии. Рид и Рабинович [61] дали прекрасный анализ этого метода. Интересно отметить, что все экспериментальные данные по этим системам согласуются, если предположить, что стерические множители лежат в пределах от 0,1 до 1. [c.263]

    Промотирование железоокисных катализаторов щелочными металлами (8-9%) оказывает существенное влияние на энергию связи кислорода в кристаллической решетке катализатора и соответственно на скорость выгорания углеродистых отложений, но не оказывает влияния на механизм окисления углеродистых отложений [3.27]. При температуре ниже 550 С каталитическое выгорание углерода происходит вследствие воздействия двух соединений — карбоната калия и оксида железа. При температуре выше 550"С калий связывается оксидом железа (П1) в феррит. Введением промоти-рующих добавок можно повысить, но нельзя понизить энергию связи кислорода. Поэтому промотирующее влияние добавок щелочных металлов на процесс окисления углерода будет проявляться в основном лишь в области высоких температур, когда лимитирующим этапом регенерации является присоединение кислорода к катализатору и увеличение энергии связи кислорода приводит к ускорению окисления угле- [c.70]


    Во внешнем электронном слое атомы щелочных металлов имеют по одному электрону. Во втором снаружи электронном слое у атома лития содержатся два электрона, а у атомов остальных щелочных металлов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы этих элементов довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (см. табл. 30). Образующиеся при этом [c.561]

    Щелочные металлы принадлежат к числу наиболее активных в химическом отношении элементов. Их высокая химическая активность обусловлена в первую очередь низкими значениями энергии ионизации их атомов — легкостью отдачи ими валентных электронов. При этом энергия ионизации уменьшается при переходе от лития к цезию (табл. 30). Ясно, что химическая активность прн этом возрастает. [c.563]

    Почти все соединения щелочных металлов растворимы в воде. Ионы щелочных металлов образуют бесцветные растворы. Растворы становятся окрашенными, когда электрон в атоме возбуждается с одного энергетического уровня на другой, причем разница энергий этих уровней соответствует видимой части спектра. У ионов щелочных металлов нет свободных электронов, которые могут возбуждаться светом с энергией, соответствующей видимой части спектра. Оксиды щелочных металлов обладают основными свойствами, и все они реагируют с водой, образуя основные гидроксиды, растворимые в воде и полностью диссоциирующие в ней. [c.434]

    Катионы или анионы, имеющие слабую энергию связи со своими соседями, вытесняются в поверхностный слой. В шлаках к таким компонентам относятся катионы щелочных металлов, фосфора, [c.82]

    В табл. 1.1 приведены значения энергий ионизации некоторых атомов. Из нее следует, что наименьшее значение энергии ионизации (/ ) имеют щелочные металлы и что для данного элемента при переходе от одного значения I к другому часто наблюдается резкое изменение энергии. Так, для бора отрыв 4-го и 5-го электронов требует примерно десятикратной (ио сравнению с 1,2 и 3-м электронами) затраты энергии. В табл./1.1 указанные скачки отмечены ступенчатыми линиями. Это непосредственно свидетельствует о группировке электронов в слои. [c.32]

    Аналогичная последовательность в изменении /1 наблюдается для элементов всех периодов — наименьшую энергию ионизации имеет начинающий период щелочной металл, наибольшую — завершающий период благородный газ. Во вставных декадах энергии ионизации сравнительно мало изменяются при переходе от одного элемента к другому и они выше, чем для металлов главных [c.43]

    Значения ф° для бериллия и его аналогов близки к значениям ф° для элементов подгруппы лития, хотя энергии ионизации атомов элементов подгруппы ПА значительно больше, чем для щелочных металлов, ио это различие в энергиях ионизации компенсируется более высокими энергиями гидратации катионов элементов подгруппы ПА, [c.312]

    По малой инерционности (выражающейся в малых значениях энергии активации и соответственно в большой эффективности соударений) реакции атомов Н с галогенами щ галогеноводородами приближаются к реакциям щелочных металлов. [c.32]

    В ряде случаев сечения а, соответствующие превращению электронной энергии возбужденного атома в относительную кинетическую энергию сталкивающейся пары, оказываются очень малыми. Например, для дезактивации Ка (3 ) аргоном оценка верхнего значения а в условиях ударных волн составляет Ю - см [148]. Столь малые сечения дезактивации атомов щелочных металлов находятся в согласии с очень малыми величинами сечений возбуждения атомов вблизи порога возбуждения [148]. [c.103]

    Измерение сечений гарпунных реакций подтверждает следствие, вытекающее из простой модели, об увеличении сечения нри уменьшении потенциала ионизации атома щелочного металла. Эта модель предсказывает далее независимость сечения реакции от относительной кинетической энергии молекул. Что касается внутреннего состояния молекулы Х , то оно может влиять па сечение реакции только вследствие зависимости электронного сродства Хз от начального колебательного состояния [53, 160]. [c.139]

    Фотоэлектрический эффект был открытв 1887 г. Г. Герцем и вскоре же подробно изучен русским физиком А. Г. Стслзтовым. Явление это состоит в испускании электронов металлами, а также некоторыми полупроводниками (селен), при их освещении. Большинство металлов дает этот эффект лишь при их освещении ультрафиолетовыми лучами, обладающими большой энергией щелочные металлы, атомы которых легко отщепляют электроны, дают этот эффект и под действием более мягких лучей — лучей видимого света. По своей сущности это [c.75]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]


    Атомы рассматриваемых элементов имеют единственный валентный электрон. По сравнению с элементами других подгрупп у них наиболее низкие первые энергии ионизации, размеры атомов и ионов наибол ьшие. Таким образом, щелочных металлов наиболее сильно выражены металлические признаки. Они проявляют только степень окисления + 1, так как вторая энергия ионизации у этих элементов очень сильно отличается по значению от первой. [c.485]

    Лишь в редких случаях молекулы исходного вещества реагируют непосредственно. Примером такой непосредственной реакции может служить реакция распада Иодистого водорода. При столкновении двух молекул иодистого водорода, обладающих достаточной энергией и соответственно взаимно ориенти рованиых, происходит разрыв связей Н—J и возникновение новых связей между атомами водорода и иода с образованием молекулярного водорода и иода. Примером реакций, для которых известны все элементарные процессы, т. е все промежуточные химические реакции, могут служить реакции между парами щелочных металлов и галогенов (так называемые ре-акции в разреженном пламени, см. гл. IV, 8). [c.60]

    Приведенные в табл. 30 данные показывают, что в большинстве случаев свойства щелочных металлоа закономерно изменяются прн переходе от лития к цезню. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плот-ности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов прн переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Ы—Сз не так правильно. Причина этого, подробно рассмотренная в 100, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.563]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Атомы всех щелочных металлов имеют валентную э.ушктронную конфигурацию. 5. Они легко теряют единственный валентный электрон и поэтому обладают низкими энергиями ионизации и низкими электроотрицательностями. Их энергия ионизации и электроотрицательность умень- [c.432]

    Степень ионности связи в НС1 17%, в s l 75%, в Т1С1 29% s l должен иметь наибольшую степень ионности связи, поскольку атомы щелочных металлов обладают очень низкой злектроотрицательностью (а валентный 5-электрон у атома тяжелого элемента группы IA, каковым является С, находится далеко от ядра, вследствие чего его энергия ионизации очень низка) ионный характер связи в этих молекулах повышается по мере уменьшения электроотрицательности атома, присоединенного к С1 хн = 2,20 Хп = 2,04 Хс = 0,79. [c.523]

    Значения первых энергий тзннзации атомов щелочных металлов составляют (эВ) 5,39(Ь1), 5,14 (Ыа), 4,34(К), 4,18(КЬ), 3,89(Сз). Энергии ионизации этих элементов являются наиболее низкими. Это объясняется сильным экранированием заряда ядра электронными слоями, которые предшествуют внешнему электрону. Уменьшение энергии ионизации от лития к цезию обусловлено возрастанием расстояния электрона от ядра по мере увеличения размера атомов. [c.43]

    Строение внешних электронных оболочек атомов щелочных металлов пх. Поэтому они имеют низкие энергии ионизации, уменыиаюищеся при переходе по подгруппе элементов сверху вниз. При этом ослабление связн электрона с ядром вызывается ростом радиуса атома (обусловленного увеличением главного квантового числа внешнего электрона) и экранированием заряда ядра предшествующими внешнему электрону оболочками. Поэтому данные элементы легко образуют катионы Э+, имеющие конфигурацию атомов благородного газа. [c.300]

    Переход электрона из оболочки атома благородного газа иа более высокий энергетический уровень требует такой затраты энергии, которая не может быть компеиспрована образованием связи, поэтому щелочные металлы не проявляют других степеней. окпсления, кроме 4-1- [c.300]

    Все щелочные металлы очень сильные восстановители, их стандартные электродные потенциалы ф° отрицательные и имеют большое абсолютное значение. Наиболее отрицателен ф° лития. Это обусловлено более высокой энергией гидратации иоиов 1.1+ но сравнению с ионами других щелочных металлов (иоп Li+ имеет среди них наименьший радиус). В расплавленных средах ф (Ь1+/1.[), наоборот, минимален по абсолютному значению среди ф щелочных металлов. Близость значений ф° других и1елочиых ме- [c.300]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

    Наиболее легко состояние плазмы достигается у веществ, атомы или молекулы которых обладают наиболее низкими потенциалами ионизации. Так, у большинства щелочных металлов ионизация становится заметной уже при 2 500—3 000° С. В настоящее время плазма играет важную роль в некоторых процессах новой техники — в мощных ракетных двигателях, в процессах преобразования энергии нагретого тела в электрическую энергию (в магни-тогидродинамических генераторах), в плазменных горелках, дающих возможность получать температуру 14 ООО—16 000° К, а высокотемпературная плазма — в термоядерных процессах. [c.120]

    Укажем далее реакции атомов щелочных металлов с галогеноводородами. Из реакций этого типа изучены реакции Na и К с H I, НВг и HJ. Было найдено, что скорость этих реакций определяется величиной н знаком теплового эффекта процесса М + НХ = MX h Н, причем энергия активации эндотермических нроцессов равна их тепловому эффекту. Энергия же активации экзотермических процессов практически равна нулю. Так, сопоставляя скорость реакции, т. е. число образующихся молеку.т NaX с числом газо-кипетических столкновений атомов Na с молекулами НХ, Хартель [312] нашел, что энергия активации процессов Na + H l (НВг, HJ) = Na l (NaBr, NaJ) равна соответственно 4,5 1,9 и 0,2 ккал. Эти величины он сравнивает с тепловыми эффектами указанных процессов, которые, согласно его вычислениям, равны —5,1 —1,6 и 0,0 ккал. [c.30]

    Сечения квазнрезонансной передачи возбуждени [ резко зависят от величины дефекта резонанса ЛЕ, достигая при малых АЕ очень больших величин — до 10 см . На рис. 25, заимствованном м обзора [358], приведены экспериментальные данные по сечениям передачи электронного возбуждения атомам щелочных металлов М (М == Ма, ВЬ, Ся) лри столкновениях с возбужденными атомами Н и М. Обращает на себя внимание явно выраженная резонансная форма сечения Q в зависимости от энергии АЕ, переданной поступательным степеням свободы. [c.102]

    Последовательная теория превращения электронной энергии атома в поступательную должна основываться на исследовании неадиабатических переходов между потенциальными кривыми квазимолекулы, образующейся из сталкивающихся атомов. Как отмечалось ранее (см. 9), эти переходы особенно эффективны в областях сближения или пересечения кривых. Поэтому выяснение возможности такой структуры электронных термов составляет одну иа основных задач теории. Наиболее подробно в этом отношении исследованы процессы столкновения возбужденных атомов щелочных металлов М [c.103]

    Представление об эффективных зарядах атомов приводит к следующей картине реакции атома натрия (в общем случае — атома щелочного металла) с молекулой R 1 (в общем случае — с молекулой RX, где X — атом галогена). При приблнжоиии атома натрия к молекуле R I происходит смещение электронного облака от атома натрия к атому хлора. Нужно поэтому ожидать, что чем Солее эффективный заряд атома хлора, тем должно быть более затруднительно перераспределение электронной плотности в комплексе R 1—Na и тем бо.гыпе должна быть энергия активации. [c.153]


Смотреть страницы где упоминается термин Энергия щелочных металлов: [c.93]    [c.350]    [c.408]    [c.434]    [c.434]    [c.589]    [c.121]    [c.301]    [c.312]    [c.316]    [c.29]    [c.103]    [c.40]    [c.45]    [c.117]    [c.221]    [c.43]   
Курс физической химии Издание 3 (1975) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Гидриды щелочных металлов энергия ковалентной связи

Потенциальная энергия галогенидов щелочных металло

Сопоставление энергии гидратации ионов щелочных металлов и галогенов

Щелочные металлы катионы, энергия гидратации

Щелочные металлы уровни энергии

Щелочные металлы энергия ассоциации

Щелочные металлы энергия ионизации

Щелочные металлы энергия сублимации

Щелочные металлы, галогениды энергии ионизации центров

Щелочные металлы, галогениды энергия диссоциации

Щелочных металлов ингредиенты энергии связи

Щелочных металлов энергии связи

Энергии молекул галогенидов и гидридов щелочных металлов в газообразном состоянии

Энергия и степень гидратации солей щелочных металлов

Энергия металлов

Энергия сублимации галогенидов гидридов щелочных металлов таблица



© 2025 chem21.info Реклама на сайте