Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофобность углей

    Сушку после десорбции можно достаточно быстро произвести при температуре ниже 100° С, так как гидрофобный уголь легко отдает полученную им влагу. [c.192]

    В трехфазном цикле отсутствует фаза сушки, так как вследствие гидрофобности уголь после десорбции имеет невысокую влажность и его полная регенерация достигается за период охлаждения. [c.96]

    Классификация сорбентов на гидрофобные (уголь) и гидрофильные (силикагель) впервые была предложена Л. Г. Гур-вичем (1923 г.). [c.330]


    Анализ изотерм П(/г) для ос-пленок воды на поверхности кварца показал, что приближенно они следуют экспоненциальной зависимости (1.1) [47]. При этом параметр К для пленок на подложках из стекла, кварцы и слюды сохраняет примерно то же значение, что и для симметричных водных прослоек (1-ьЗ) 10 " Н/см2, но длина корреляции I выше, составляя до 10 нм для наиболее гидрофильных поверхностей и снижаясь до 1 нм при уменьшении степени гидрофильности. Повышение температуры приводит, главным образом, к падению значений I от 3,3 нм — при 20 °С до 0,8 нм — при 40 °С для пленок на слюде. Для почти гидрофобной поверхности пиролитического углерода (краевой угол 0 = 72°) меняется, как и в случае симметричных прослоек, знак параметра К —2-10 Н/см ) прп сохранении обычного порядка значений / = 0,7 нм. [c.18]

    Адсорбционная способность активного угля по отношению к различным примесям и в различных растворителях неодинакова. Являясь неполярным гидрофобным адсорбентом, он хорошо поглощает растворенные вещества из водных растворов и полярных жидкостей — спиртов, сложных эфиров, амидных растворителей. Для удаления примесей из малополярных и, особенно, неполярных, например углеводородных растворителей, в которых активный уголь не всегда достаточно эффективен, можно рекомендовать использование активного оксида алюминия или порошкообразного силикагеля. [c.116]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Самопроизвольная капиллярная пропитка пористой среды прекращается, если угол избирательного смачивания 0 становится равным или больше 60°. В пористой среде со смешанной (гидрофильной и гидрофобной) смачиваемостью усредненный угол смачивания при движении мениска, очевидно, не менее 60°. [c.40]

    Если ai3>ai2, т. e. поверхностное натяжение между газом и твердым телом больше, чем между твердым телом и жидкостью, то os 0>О и краевой угол меньше 90°. Если же ai3краевой угол тупой. По предложению П. А. Ребиндера, твердые поверхности, хорошо смачиваемые водой, называются гидрофильными, а несмачиваемые — гидрофобными. Так как гидрофобные жидкости хороию смачиваются неполярными жидкостями, то их называют еще олеофильными. Ясно, что адсорбция веществ, растворенных в воде, осложняется на гидрофильных поверхностях, а растворенных в неполярных, например углеводородных, жидкостях — на олео-фильных поверхностях. [c.48]

    Сущность работы. Введение ПАВ в водные растворы настолько понижает поверхностное натяжение воды и, следовательно, изменяет краевой угол смачивания, что при некоторой концентрации ПАВ раствор из гидрофобного становится гидрофильным наступает полное смачивание, и капля раствора растекается по поверхности. Таким образом, при определенной концентрации ПАВ поверхность твердого тела из гидрофобной становится гидрофильной— происходит инверсия. Задача настоящей работы — найти точку инверсии поверхности парафина, т. е. той концентрации ПАВ, с которой водный раствор становится смачивающим поверхность парафина. [c.47]

    Поверхности, для которых угол смачивания изменяется в диапазоне 9О°< 0< 180°, называются лиофобными, а при О°<0< <.90° лиофильными. Если наносимой жидкостью является вода, то различают, соответственно, гидрофобные и гидрофильные поверхности. [c.52]

    Объяснение. Проведение опыта в двух цилиндрах позволяет убедиться в том, что в данном случае происходит не обычное механическое разделение смеси по плотности ее составных частей. Если бы это было так, то мел, как более тяжелый компонент смеси, в обоих цилиндрах сосредоточивался бы в нижних слоях цилиндров. Однако этого не наблюдается. Следовательно, разделение смеси обусловлено избирательным смачиванием ее компонентов. Уголь, обладающий гидрофобными свойствами, хорошо смачивается малополярными жидкостями, такими, как бензол и четыреххлористый углерод, поэтому он и сосредоточивается в этих жидкостях. Карбонат кальция (мел), наоборот, обладает гидрофильными свойствами и поэтому он преимущественно переходит в водный раствор. [c.214]

    Таким образом, все гидрофильные вещества (силикагель, глины) хорощо адсорбируют поверхностно-активные вещества из неполярных или слабо полярных жидкостей. Все неполярные гидрофобные вещества (уголь, графит, тальк, парафин), наоборот, хорошо адсор- [c.359]

    Следует заметить, что во многих учебниках и монографиях гидрофильной или гидрофобной поверхностью называется поверхность, на которой вода образует, соответственно, острый или тупой краевой угол на границе с воздухом. Так определять гидрофильность или гидрофобность неправильно, поскольку большинство поверхностей дают с водой в атмосфере воздуха острые краевые углы. Иначе обстоит дело при избирательном смачивании поверхности водой в присутствии неполярной жидкости. В этом случае вода далеко не всегда образует острый краевой угол. Гидрофильные поверхности в этих условиях будут избирательно смачиваться водой, при этом краевые углы 0 < 90° однако если поверхности гидрофобные, углеводород частично вытесняет воду и для воды 0>9О°С. [c.158]

    Флотационное обогащение руд полезных ископаемых основано на том, что сернистые соединения, в виде которых металлы обычно находятся в руде, обладают большей гидрофобностью, чем пустая порода, например кварц. Практически флотационное разделение руды никогда не проводят простым введением измельченной руды в воду, поверхность которой граничит с воздухом или маслом. В таком виде флотационный процесс слишком неэффективен. В настоящее время широкое применение получила так называемая пенная флотация. Она заключается в том, что в суспензию минерала— флотационную пульпу — тем или иным способом вводят пузырьки воздуха. При всплывании пузырьки собирают по своей поверхности те частицы руды, на которых вода образует большой краевой угол. В результате на поверхности пульпы образуется минерализованная пена. Эту пену самотеком или с помощью специальных гребков удаляют с поверхности пульпы в виде концентрата. руды. Хорошо смачиваемые водой частИцы пустой породы не прилипают к пузырькам, оседают на дно и образуют отходы флотации, так называемые хвосты . [c.165]

    Поэтому для адсорбции поверхностно-активных веществ, растворенных в полярной жидкости, например в воде, применяют неполярные гидрофобные адсорбенты (уголь), для адсорбций же >13 неполярных жидкостей (СеНе, ССЦ и др.) — полярные гидрофильные адсорбенты (силикагель). [c.106]

    Примерами гидрофобных веществ являются уголь, сажа, сера, парафин, металлы, т. е. неполярные вещества, поверхности которых хороша смачиваются неполярными, углеводородными жидкостями. [c.137]


    Если твердое тело погрузить в жидкость, происходит смачивание его поверхности. При этом исчезает граница раздела твердое тело — газ и возникает граница раздела твердое тело — жидкость. Поскольку полная энергия первой поверхности всегда больше полной энергии второй поверхности, то происходит выделение энергии в форме теплоты. Эта энергия носит название теплоты смачивания и представляет собой убыль полной энергии при образовании межфазной поверхности жидкость — твердое тело. Теплота смачивания является чувствительной мерой гидрофобности или гидрофильности поверхности. В случаях, когда весьма затруднительно определить краевой угол (например, при смачивании порошков), она является единственной характеристикой смачивания. [c.199]

    С водой и поэтому при смачивании их водой выделение тепла наибольшее. Гидрофобные же порошки (уголь, графит и металлы) имеют наименьшую поверхностную энергию на границе с гексаном, поэтому гексан дает наибольшую теплоту смачивания. Коэффициент фильности не зависит от дисперсности порошка, если она одинакова при смачивании обеими исследуемыми жидкостями. Для гидрофильной поверхности Р > 1, для гидрофобной Р < 1 (табл. 10). [c.115]

    Кислая среда (pH < 5) затрудняет работу цеолитов и сит на их основе. Поэтому для работы в кислых средах (также и для кислотных газов) лучше применять пористые стекла. Эти материалы обладают неоднородной пористостью. Мелкопористый активированный уголь применяют для разделения гидрофобных веществ. [c.350]

    В 80-х годах под руководством Кордеша в Университете Грац (Австрия) и Институте водородных систем (Канада) проводилось совершенствование ТЭ с угольными электродами [86, т. 3, с. 1201-1220, 1223-1242 175]. Вместо униполярных в ТЭ применяются биполярные электроды (рис. 2.5). Это позволяет сократить расход никеля на токоотводы или полностью отказаться от Него, применив в качестве основы токоотвода графитовую ткань смесь графита и полипропилена. Электроды состоят из Нескольких слоев высокопористого гидрофобного (уголь - 65, тефлон - 35 масс, долей в %), подложки из графита или никеля [c.73]

    На прилипание частиц к зернам фильтрующей загрузки должна оказывать влияние их смачиваемость водой. Известно, что прилипание минимально, еслд одна из контактирующих поверхностей гид-рофобна, а другая гидрофильна (песок, уголь), и максимально, если обе поверхности гидрофильны (песок, глина) или гидрофобны (уголь, парафин). [c.127]

    Показателем молекулярного сродства жидкой и твердой фаз является принадлежность системы жидкость — твердое тело к лиофильным или лиофобным системам [2] (если жидкой средой является вода, говорят соответственно о гидрофильных и гидрофобных системах). Характеристикой лиофильной и лнофобной систем является краевой угол смачивания — угол между твердой поверхностью и касательной к поверхности капли жидкости [1, с. 116]. Когда этот угол меньше 90°, жидкость хорошо смачивает твердую поверхность, и система лио-фильна (гидрофильна). Когда угол больше 90°, смачиваемость плохая, и система лиофобна (гидрофобна). Угол смачивания является показателем сил сцепления молекул жидкости и твердого тела и молекул жидкости между собой чем меньше этот угол (чем система Силее лиофильна), тем больше сцепление молекул жидкости и твердого тела. В лиофильных (гидрофильных) системах твердые частицы обволакиваются слоем жидкости, в котором молекулы определенным образом ориентированы. Это явление называется сольватированием (гид-ратированием). В гидрофильной системе толщина гидратных оболочек достигает 0,1 мкм [2, с. 38]. В этих оболочках молекулы воды сжаты и обладают упругостью, что определяет аномальные свойства такой си стемы, присущие обычно твердым телам. [c.202]

    Поместим в воду измельченное гидрофобное вещество, на пример, уголь, на поверхность воды нальем слой жидкого углеводорода, например бензола, и тщательно взболтаем тогда гидрофобные, бензолофильные частички угля, попав на поверхность раздела капелек бензола в воде, омочатся бензолом и вытолкнутся из водной фазы в бензольную, как изображено на рис. 89, и когда мы прекратим встряхивание, они вместе с капельками бензола всплывут п в верхний слой жидкости. Если же в этом опыте мы вместо гидрофобного уголь- р с. 89. Частица, не сма-ного порошка возьмем гидрофильный чиваемая жидкостью II. порошок глины, то такого явления [c.193]

    Ребиндер , исследовав тепловой эффект при адсорбции некоторых растворенных веществ на жидкой поверхности, дал термодинамический вывод величины дифференциальной теплоты адсорбции и установил зависимость адсорбции от природы растворенного вещества. Чем сильнее эти вещества снижают поверхностную энергию на поверхности раздела между адсорбентом и растворителем, тем лучше они адсорбируются. Такие вещества обладают так называемой поверхностной активностью (частная производная поверхностного натяжения по концентрации, взятая с обратным знаком). Ребиндер вывел правило уравнивания полярност-гй, заключающееся в том, что на границе двух фаз происходит адсорбция тех веществ, полярность которых лежит между полярностями обеих фаз, причем адсорбция возрастает с увеличением разницы в полярности этих фаз. Необходимо отметить, что еще в 1923 г. Л. Г. Гурвичи предложил классификацию сорбентов на гидрофобные (уголь) и гидрофильные (силикагель) или аполярные и полярные первые лучше адсорбируют из полярных растворителей, вторые—из аполярных. Цвет уже в своей первой работе [c.12]

    Адсорбцию осуществляют в вертикальных аппаратах, заполненных твердым г.оглотителем (активный уголь, силикагель, цеолиты). Наиболее широкое применение в промышленности получил активный уголь с активной поверхностью 600—1700 м-1г. Он обладает очень важным качеством — гидрофобностью, так как отходящие промышленные и вентиляционные газы, как правило, влажные. Десорбцию поглощенного углеводорода прово- 1ят с помошью ВОДЯНОГО Пара, активность тля восстанавливают обработкой горячим воздухом. [c.70]

    Очевидно, адсорбция породой различного количества асфальтенов приводит не только к различной степени гидрофобности породы, но и к различным свойствам граничного слоя нефти. Следовательно, будет меняться в определенной степени и характер вытеснения. Поэтому следует остановиться на исследованиях Н. Н. Таирова и М. М. Кусакова [175], которые показали, что при изменении давления в системе углеводородная жидкость—вода— кварц, создаваемого метаном, меняется краевой угол смачивания кварца углеводородной жидкостью. [c.177]

    Для ускорения флотации применяют ряд технологических приемов. Через смесь твердого измельченного материала с водой пропускают снизу мелкими пузырьками воздух. На границе каждого пузырька с водой происходят уже рассмотренные явления (см. на рис. 6). В результате пузырьки, поднимаясь в воде, захватывают с собой гидрофобные частицы. Чем больше несмачивае-мость (гидрофобпость) частиц минерала и краевой угол 0, тем больше периметр прилипания пузырька воздуха к частице и вероятность ее всплывания. Это видно из уравнения, характеризующего работу адгезии минерал — воз- [c.14]

    Количественная оценка упомянутого выше механизма для Ярино-Каменноложского месторождения выглядит следующим образом. Поверхностное натяжение а нефти на границе с пластовой водой составляет 0,03 Н/м, угол смачивания 0 оценен в 152°, средний радиус пор для песчаников со средними коллекторскими свойствами колеблется от первых единиц до первых десятков микрометров. В соответствии с этими величинами капиллярное давление в порах гидрофобной породы яснополянского горизонта составляет 0,005—0,05 МПа (среднее значение 0,025—0,03 МПа). [c.26]

    Равновесные краевые углы, рассчитанные на основе баланса сил, действующих по периметру смачивания, определяются уравнением Юнга (1.13). Если поверхностное натяженне на границе твердое тело— газ сГг-г больше, чем поверхностное натяжение на границе твердое тело — жидкость ат-м<, то краевой угол 0р < 90°, поверхность твердого тела является лиофильной (при смачивании водой — гидрофильной), К материалам с гидрофильной поверхностью относятся, например, кварц, стекло, оксиды металлов. Жидкость не смачивает поверхность, если Стт-г < огт-ж н Эр > 90°. В этом случае поверхность является лио-фобной (гидрофобной). К материалам с гидрофобной поверхностью относятся металлы, у которых поверхность не окислена, большинство полимеров, а также все органические соединения, обладающие иизко11 диэлектрической проницаемостью. [c.21]

    Согласно исследованиям Б. В. Лосикова и Л. А. Александровой [38] на поверхности, образованной обычными нефтяными маслами, независимо от их вязкости и глубины очистки канля воды дает довольно высокое и постоянное значение контактного угла, составляющего 80—90°. Растворимые в масле гидрофобные поверхностноактивные вещества, содержащие фосфор, серу, нитрогруппу и некоторые другие, не влияют на величину краевого угла и не обнаруживают какой-либо эффективности как ингибиторы ржавления. Напротив, многие вещества, содержащие в молекуле карбоксильную, гидроксильную, эфирную группы, понижают величину краевого угла в степени, примерно пропорциональной их способности защищать металлы от ржавления. С увеличением концентрации этих веществ в масле краевой угол уменьшается до некоторого предела, после чего дальнейшее увеличение концентрации уже не меняет его. Это, между прочим, также соответствует зависимости, существующей между концентрацией противоржавийной присадки в масле и ее защитной способностью. [c.353]

    Давно известно, что эффективно стабилизируют эмульсии против коалесцепции определенные высокодисперсные порошки. Химическая природа этих частиц является менее важной, чем их поверхностные свойства. Основные требования к ним 1) размер частиц должен быть очень малым по сравнению с размером капли 2) частицы должны иметь определенный угол смачивания в системе масло — вода — твердое. Твердые, сильно гидрофильные частицы (например, двуокись кремния в среде с pH = 10) легко переходят в водную фазу наоборот, сильно гидрофобные частицы, в частности, твердые частицы с очень длинными углеводородными цепями) переходят в масло. Эмульгирование происходит частицами с соответствующим балансом гидрофильности и гидрофобности, причем непрерывная фаза образует с поверхностью раздела острый угол. Например, окись алюминия (глинозем) способствует образованию эмульсий М/В, а газовая сажа — В/М. Такая зависимость от смачивания изучена Шульманом и Леем (1954) и Такакува и Такамори (1963). [c.113]

    На краевой угол могут влиять условия образования поверхности. Так, поверхность стеариновой кислоты, полученная охлаждением ее расплава на воздухе, гидрофобна. Поверхность же стеариновой кислоты, полученная охлаждением ее расплава на границе со стеклом, оказывается гидрофильной. Это явление можно объяснить тем, что в первом случае наружу слоя кислоты (в воздух) обращены, главным образом, гидрофобные углеводородные радикалы стеариновой кислоты, а во втором случае, благодаря действию поверхности полярного стекла на расплав, на-, ружу обращены полярные гидрофильные карбоксильные группы. [c.160]

    Процессом, в известной степени обратным стирке, является пропитка тканей с целью повысить их водонепроницаемость при сохранении воздухопроницаемости (так называемая пористая водоотталкивающая пропиткй). Задача технолога при проведении этого процесса заключается в образовании на поверхности отдельных волоконец ткани тонких пленок, на которых вода образует большой краевой угол, С этой целью ткани пропитывают растворами или дисперсиями гидрофобных, так называемых водоотталкивающих веществ. В качестве таких веществ можно использовать ацетат алюминия, мыла поливалентных металлов, парафин, асфальт, нефтяные остатки, кремнийорганические соединения и смеси этих веществ. Иногда пропитку тканей с целью повышения их водонепроницаемости проводят в два приема. Например, ткань пропитывают сначала дисперсией парафина, содержащей мыло в качестве эмульгатора, а затем раствором ацетата алюминия, при этом частицы парафина отлагаются на волокне в результате коагуляции. [c.163]

Рис. 10.10. Изотерма поверхностного избытка (Г) в растворах поверхностно-активного вещества. Структура поверхностного слоя а — чистый растворитель б — ненасыщенный мономолекулярный слой ПАВ в — насыщенный мономолекулярный слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал способ получения активных углей, предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э. Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способон активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле. Современные методы получения и т .следования активных углей в нашей стране разработаны М. М. Дз бининым. Удельная поверхность активных углей достигает 1000 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо — углеводороды. Рис. 10.10. <a href="/info/8760">Изотерма поверхностного</a> избытка (Г) в <a href="/info/73320">растворах поверхностно-активного вещества</a>. <a href="/info/4510">Структура поверхностного слоя</a> а — <a href="/info/129270">чистый растворитель</a> б — ненасыщенный <a href="/info/4461">мономолекулярный слой</a> ПАВ в — <a href="/info/740682">насыщенный мономолекулярный</a> слой ПАВ. ный уголь и силикагель. Поглощающая способность угля подмечена еще в ХУП веке. Однако лишь в 1915 г. Н. Д. Зелинский разработал <a href="/info/300352">способ получения активных</a> углей, предложив их в <a href="/info/1439224">качестве универсальных</a> поглотителей отравляющих веществ, и совместно с Э. Л. <a href="/info/677794">Кумантом</a> сконструировал угольный противогаз с резиновой маской. Один из первых способон <a href="/info/311838">активирования древесного</a> угля состоял в обработке его <a href="/info/13965">перегретым паром</a> для удаления <a href="/info/56063">смолистых веществ</a>, образующихся при <a href="/info/83829">сухой перегонке древесины</a> и заполняющих поры в обычном угле. <a href="/info/658568">Современные методы получения</a> и т .следования активных углей в <a href="/info/1692382">нашей стране</a> разработаны М. М. Дз бининым. <a href="/info/1443951">Удельная поверхность активных</a> углей достигает 1000 на грамм. <a href="/info/4303">Активный уголь</a> является <a href="/info/15361">гидрофобным адсорбентом</a>, плохо <a href="/info/1634398">поглощает пары</a> воды и очень хорошо — углеводороды.
    С целью уменьщения адсорбции растворителя при молекулярной сорбции из водных растворов обычно при.меняют гидрофобный адсорбент — активный уголь, а при сорбции из неполярных растворите.тей (углеводородов) гидрофильный адсорбент — силикагель. Адсорбция протекает по активным центрам адсорбента, часто мономолекулярно и высокоизбирате.тьно. Изотермы молекз лярной адсорбции из растворов, так же как газов и паров, имеют вид кривой, приведенной на рис. 10.10. Десорбцию, осуществляемую с помощью жидкостей, обычно называют элюцией, а жидкости или растворы, применяе.мые для этих целей, элюентами. [c.302]

    В табл. 19.1 приведены примеры гидрофильных и гидрофобных веществ. Из данных табл1 щы следует, что активированный уголь обладает гидрофобными свойствами, остальные три вещества гидрофильны. [c.315]

    Кроме ископаемых углей важнейшими техническими сортами угля являются кокс, древесный уголь, сажа, костяной уголь. Различные специальные методы обработки технических углей позволяют получать активные угли, удельная поверхность которых может достигать 1000 на 1 г. Активные угли — прекрасные гидрофобные адсорбенты они поглощают углеводороды, газы, примеси солей металлов (М +). Свойства угля адсорбировать растворенные вещества открыл в конце XVIII в. Т. Е. Ловиц. [c.286]


Смотреть страницы где упоминается термин Гидрофобность углей: [c.17]    [c.323]    [c.13]    [c.15]    [c.493]    [c.101]    [c.68]    [c.185]    [c.172]    [c.30]   
Активные угли и их промышленное применение (1984) -- [ c.55 ]




ПОИСК







© 2025 chem21.info Реклама на сайте