Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проводники, определение

    В собранном виде термометр сопротивления помещают в среду, где нужно измерить температуру. Определение температуры сводится к замеру сопротивления проводника определенной длины и определенного сечения. [c.115]

    Раствор практически невозможно рассматривать как проводник определенной длины и определенного сечения. Поэтому под [c.261]


    Это соотношение имеет кардинальное значение для экспериментального определения теплоемкостей и теплот процессов. Измерить теплоемкость можно, подводя к системе определенное количество теплоты. Это несложно сделать помещают в систему проводник определенного сопротивления R и пропускают через него ток" силой / в течение времени . По закону Джоуля — Ленца количество теплоты, выделившееся в проводнике и переданное системе, равно  [c.188]

    Аппараты защиты проводников силовых и осветительных сетей должны иметь по отношению к допустимым длительным токовым нагрузкам проводников определенную кратность номинального тока плавких вставок предохранителя или тока уставки автоматического выключателя соответствующей цепи. [c.52]

    Действие термометров сопротивления основано на изменении электрического сопротивления проводника в зависимости от температуры. Большинство чистых металлов при нагревании увеличивает свое электрическое сопротивление, а некоторые изменяют сопротивление в определенных температурных интервалах более или менее равномерно. Таким образом, зная зависимость между изменением сопротивления проводника и температурой, можно но величине сопротивления определить температуру, до которой нагрет проводник. Для фиксации этого изменения сопротивления применяют вторичные приборы с температурной шкалой, работающие по той или иной схеме и отстоящие от термометров сопротивления на некотором расстоянии. Между собой термометр сопротивления и вторичный прибор связаны электрическими проводами. [c.53]

    Закон Ома, лежащий в основе определения единицы электрического сопротивления, применим к системе проводников, включающей электролиты, если учитывать (и вычитать) скачки потенциала на границах фаз электрод — раствор и раствор — раствор. Отклонения от закона Ома в электролитах наблюдаются в полях высокой частоты или при очень больщих напряженностях поля. [c.388]

    При погружении в раствор электролита двух разных металлов, соединенных проводником, по последнему проходит ток вследствие наличия в образовавшемся гальваническом элементе электродвижущей силы. Каждый гальванический элемент характеризуется определенной электродвижущей силой 7, численно равной разности потенциалов между его электродами в разомкнутом состоянии, т. е. при условии, что сила тока в цепи равна нулю, [c.27]

    Мессенджер 1105] предложил весьма интересный метод определения эффективности деэмульгаторов, основанный на изменении электропроводности эмульсии в процессе ее разрушения под действием деэмульгатора. Нефтяные эмульсии обычно являются плохими проводниками электрического тока, но когда смешивают такую эмульсию с эффективным деэмульгатором, ю в момент ее разрушения электропроводность эмульсии резко увеличивается. [c.177]


    Опыт показывает, что водные растворы определенных веществ, которые были названы электролитами, являются сравнительно хорошими проводниками электрического тока. Речь идет о веществах, которые в химии называются кислотами, солями и основаниями. Электролитическая электропроводность отличается от металлической проводимости следующими характерными свойствами  [c.239]

    Данные к определению сил притяжения электрического заряда в поле проводников различной формы [c.75]

    Расчет электронагревателей заключается в определении потребной мощности, на основе которой находят необходимую силу тока и сопротивление R нагревателя. По величине / подбирают материал, сечения и длину проводников. [c.322]

Рис. 13.4. К определению поля магнитной напряженности вокруг проводника с током Рис. 13.4. К определению <a href="/info/92307">поля магнитной напряженности</a> вокруг проводника с током
Рис. 13.5. К определению магнитного поля прямолинейного проводника с током Рис. 13.5. К определению <a href="/info/1566145">магнитного поля прямолинейного проводника</a> с током
    И каломелевый, и хлорсеребряный электроды применяют в качестве электродов сравнения для определения потенциалов других электродов. Из-за отличной воспроизводимости и простоты изготовления обычно пользуются каломелевый электродом. Этот электрод (рис. XII. 4) помещен в сосуд, в дно которого впаяна платина, приваренная к медному проводнику. В сосуд наливают ртуть так, что- бы платина была ею покрыта, затем взвесь каломели в растворе хлорида калия и раствор хлорида калия той же концентрации. Платиновый контакт предварительно амальгамируют посредством электролиза с платиновым анодом 0,1 н. раствора нитрата ртути(I), подкисленного несколькими каплями азотной кислоты. Амальгамируемый электрод служит катодом. Для приготовления взвеси каломели ее растирают с капелькой ртути в растворе хлорида калия, [c.142]

    При определении полюсов необходимо обязательно иметь в цепи сопротивления 3 п 4 во избежание короткого замыкания при случайном соприкосновении проводников. [c.204]

    Определение AU электрической цепи ванны Гц. .. Гш производится с помощью точного милливольтметра, проводники которого снабжены игольчатыми контактами По полученным величинам AU, если известна сила тока на данном участке, вычисляют сопротивления. [c.597]

    Если вещество может выделяться в твердом виде на электрод де, например в виде металла, оксида или нерастворимой соли, то существует возможность кулонометрического определения количества тока, необходимого для полного выделения определяемого вещества из раствора. Конечную точку устанавливают при этом по резкому возрастанию потенциала рабочего электрода, которое связано с тем, что из-за необходимости поддержания постоянного значения силы тока по окончании основной реакции должен протекать другой окислительно-восстановительный процесс (обычно разложение воды), сопровождаемый соответствующим увеличением потенциала. Этот метод-можно успешно применять для определения тонких слоев покрытий на проводниках. [c.273]

    Проводник, по которому течет электрический ток, представляет для него определенное сопротивление. За единицу сопротивления, хак известно, принят Ом, который представляет собой сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. [c.120]

    Второй способ основан на определении проводимости электрического тока. Если вода является дисперсной фазой, эмульсия тока не проводит (нефть — плохой проводник тока). Метод хорошо применим для темных эмульсий типа вода в нефти . [c.197]

    Из уравнения (5.6) следует, что экспериментально разность электрических потенциалов между двумя точками А п В можно измерить лишь при выполнении условия [1< > = т. е. если эти точки лежат в одинаковых по составу фазах. Таким образом, экспериментально измерить гальвани-потенциал невозможно. В то же время вольта-потенциал, как разность потенциалов между точками, находящимися в одной и той же фазе (вакууме), поддается экспериментальному определению. В обычных электрохимических экспериментах при помощи вольтметра или потенциометра всегда определяется разность потенциалов на концах правильно разомкнутой цепи, т. е. цепи, которая заканчивается проводниками из одного и того же металла, например меди. [c.24]

    Известно, что возникновение вольта-потенциала между двумя металлами в вакууме связано с образованием ионов при электронной эмиссии из металлов. Более того, явление электронной эмиссии обусловливает экспериментальную возможность определения величины вольта-потенциалов. В 1916 г. И. Лангмюр обратил внимание на соответствие между рядом металлов по работам выхода электронов, т. е. рядом Вольта, и электрохимическим рядом напряжения. Действительно, наиболее отрицательные потенциалы наблюдаются у щелочных металлов, имеющих наименьшую работу выхода электронов. Однако это совпадение только качественное, так как при этом не учитывается зависимость потенциалов электродов от концентрации ионов. Следует подчеркнуть, что нельзя измерить разность электрических потенциалов точек, расположенных в различных фазах. Можно измерить только разность потенциалов точек, лежащих в одной фазе, так как переход заряженной частицы через границу фаз сопровождается работой, равной разности химических потенциалов веществ в двух фазах. Разность электрических потенциалов может быть измерена только между точками, лежащими в одной фазе, потому что при этом разность химических потенциалов равна нулю. Так, разность потенциалов цепи всегда измеряют у двух одинаковых металлических проводников. [c.382]


    Каждая пара имеет определенный окислительно-восстанови-тельный потенциал и представляет собой полуэлемент. Когда два полуэлемента соединяют проводником первого рода, образуется гальванический элемент, имеющий собственную электродвижущую силу (э. д. с.). Направление этой э. д. с. противоположно той внеш ней э. д. с., которую прилагают при электролизе. Действительно например при электролизе 1 М раствора U I2 потенциал образую щейся у катода пары u +/ u равен стандартному потенциалу ее т. е. +0,34 в (поскольку концентрация Си -ионов равна I г-ион/л а концентрация твердой фазы Си постоянна), потенциал пары I2/2 I равняется +1,36 в, когда раствор становится насыщенным относительно СЬ при давлении его в 1 атм. Как известно, пара с меньшим потенциалом ( u V u) отдает в цепь электроны. Следовательно, при работе возникающего в результате электролиза гальванического элемента на электроде происходит процесс Си—2е- Си +. При этом медь растворяется, окисляясь до Си -+. [c.427]

    Разложение веществ под влиянием электрического юка происходит лишь в определенных условиях. В отличие от проводников первого рода, протекание электрического тока через проводники второго рода (электролиты), а следовательно, и разложение веществ происходит только при достаточных напряжениях. Это противоречит закону Ома в его обычно) форме, согласно которому сила тока в цепи всегда иропорциюнальна напряжению  [c.611]

    Широко распространены теизорезисториые преобразователи тензодатчики), принцип действия которых основан на изменении электрического сопротивления при деформации проводника. Тензо-резисторы (проволочные, фольговые или полупроводниковые) изготовляют промышленным способом. Их наклеивают на упругий элемер<т при включении в определенную измерительную схему, например мостовую, тензорезисторы позволяют определять деформацию упругого элемента. Для определения коэффициента тензо-чувствительности выполняют выборочную градуировку тензорези-сторов данной партии. Тензодатчики (сочетание тензорезистора с упругим элементом) используют не только для измерения деформации детали, на которую они наклеены, но и в зависимости от конструкции для измерения перемещений, сил (давлений, напряжений), моментов в этих случаях обычно градуируют сам датчик. [c.21]

    Термометры сопротивленпя основаны на изменении сопротивления проводников при изменениях температуры. Металлические проводники увеличивают сопротивление с повышением техмпературы и уменьшают — с понижением. Эти изменения строго обратимы, т. е. каждому значению температуры соответствует строго определенное сопротивление проводника. В термометре сопротивлеипя есть проволока (в виде большого числа витков), подключенная к измерительному прибору. Измерительный прибор по существу измеряет сопротивление проволоки-проводника. [c.142]

    Аппарат Энглера был несколько видоизменен Уббелоде (357), снабдившим его более длинной и узкой трубкой истечения. Этот вариант пригоден для определения вязкости очень подвижных масел. Отличие от аппарата Эш лера состоит в том, что наблюдается скорость истечения только 100 см наполнение сосуда А (фиг. 53) производится автоматически до некоторого уровня, определяемого отводной трубкой d. Для более густых жидкостей, чем керосин, даже для тех, вязкость которых хорошо оиределяется энглеровским прибором, видоизменение Уббелоде дает, вообш е говоря, более точные-цифры. Настояш,ая область применения аппарата—определение вязкости лри температурах выше 50°. Уббелоде предложил еще один вариант вискозиметра, в котором постоянная температура иоследуемого масла поддерживается парами какой-нибудь кипящей однородной жидкости (анилин, нитробензол и т. п.). Рубашка, окружающая сосуд с маслом, закрыта наглухо в крьипке ее имеется отверстие для наливания жидкости и другое для обратного холодильника. Потеря через лучеиспускание происходит только через крышку сосуда с маслом, которая изолируется дурными проводниками тепла. [c.255]

    Ввод графической информации в ЭВМ назависимо от дисплея производится с использованием устройства оцифровки ( дигитайзера или сколки ). Лист бумаги с изображением, которое требуется ввести в ЭВМ, закрепляют на панели из оргстекла, под которой проложена сетка тонких проводников. Обводя контуры изображения специальным пером , оператор меняет емкость определенных участков электрической сетки, и в машину передаются координаты соответствующих узлов. [c.238]

    Электролитами называются вещества, молекулы которых в определенных условиях распадаются на положительно и отрицательно заряженные ионы. Этот процесс получил название электролитической диссоциации. Ионы подвергщегося диссоциации электролита способны переносить электричество. В связи с этой способностью электролиты назьшают проводниками электричества второго рода в отличие от проводников первого рода — металлов, в которых электричество переиосигся посредством электронов. [c.171]

    Принципиальная схема прибора для определения коррозионной активности грунта по отношению к углеродистой стали по поляризационным кривым приведена на рис. 4.6. Пробу грунта для исследований отбирают и готовят так, как было описано выше. Пробу грунта помещают в фарфоровый стакан вместимостью 1 л. В грунт помещают Лрямоугольные электроды из углеродистой стали размером 25x25 мм. К электродам припаивают изолированные проводники. Место контак- [c.59]

    Потенциал электрода. Поляризация и напряжение разложения. Известно, что прохождение тока через раствор электролита резко отличается от прохождения тока через металл. Если к концам металлического стержня присоединить провода от источника тока, то уже при самом слабом приложенном напряжении через стержень будет идти поток электронов. Вещество металла при этом не изменяется, часть тока затрачивается только на некоторое нагревание проводника. Если же провода от источника постоянного тока опустить в раствор электролита, то электрический ток пойдет только при некоторых определенных условиях. Прохождение тока в этом случае связано с движением ионов в растворе и с разрядом ионов на электродах или с превращением атомов электрода в ионы. На электродах начинаются химические процессы, которые приводят к измененик> [c.190]

    Однако процессы (1) и (2) обратимы. Поэтому выделившийся на катоде водород может снова переходить в раствор в виде ионов, отдавая электроны платиновому проводнику. Эти электроны по проводу поступают на другой электрод, содержащий кислород, и равновесие (2) смещается влево. Таким образом, при электролизе возникает гальванический элемент, ток которого направлен в сторону, обратную движению тока от внешнего источника. Поэтому ток от внешнего источника будет идти через электролит только в том случае, если приложенное напряжение будет достаточно для определенного химического процесса, а именно для электролитического разложения раствора или для образования ионов из 1к1ате-риала электрода. Необходимое для этой цели напряжение называется напряжением разложения и зависит, прежде всего, от состава раствора. [c.191]

    Для проведения определения можно применить установку, схема которой изображена на рис. Д.88. Ячейка для проведения ёлектролиза соединена с сосудом, содержащим ртуть, смешанную с водой. Проводником служит платиновая проволока, впаянная в стеклянную трубку. Ячейка для электролиза закрыта крышкой для предотвращения доступа воздуха. С помощью трубки в ячейку подают азот для вытеснения кислорода из анализируемого раствора. Для контроля катодного потенциала применяют в качестве электрода сравнения каломельный электрод. Мешалка обеспечивает перемешивание анализируемого раствора и одновременно ртути. Анодом служит спираль из платиновой проволоки. Если вместо платины применить се- J)e6po, то при добавлении С1" в качестве деполяризатора можно устранить выделение кислорода, мешающее проведению реакции. [c.276]

    Исторически строение металлов и полупроводников, а также закономерности их электропроводности изучались физиками, а не химиками. Поэтому объектами изучения электрохимии остаются ионные системы (проводники второго рода) и границы раздела фаз с точки зрения их структуры и механизма переноса заряженных частиц. Отсюда вытекает следующее определение теоретической электрохимии электрохимия — то наука, которая изучает физико-химические свойства ионных систем, а также процессы и явления, происходящие на границах раздела фаз с участием заряженных частиц. В соответствии с этим определением в электрохимии можно выделить два больших раздела ионику и электродику. Первый из них занимается изучением физико-химических свойств ионных систем, второй — анализом явлений, протекающих на границе электрода и электролита. [c.6]

    Термин раствор в широкой смысле этого слова означает смесь веш,ест]з при условии, что в этой смеси нет поверхностей раздела фаз. Одпахсо под это определение попадают столь различные системы, что необходимо сделать некоторые уточнения. Растворы могут быть газообразными, жидкими или твердыми они могут быть проводниками электрического тока или диэлектриками они могут находиться в состоянии термодинамического равновесия или быть неравновесными и т. д. и т. п. В этой главе будут рассмотрены свойства гомогенных жидких растворов, находяш,ихся в состоянии термодинамического равновесия. [c.125]

    К электродам первого рода относятся также газовые электроды, представляющие собой металлический проводник, контактирующий одновременно с определенным газом, который пропускают через раствор, и с раствором, содержащим ионы этого газа (или ионы, образующиеся при взаимодействии газа с молекулами растворителя). Металлический проводник адсорбирует газ, который непосредственно принимает участие в электродном процессе. Металл при этом выполняет функции проводника И катализатора, ускоряющего установление электродного равновесия между газом и его ионами в растворе. Металлический электрод должен быть химически инертным относительно раствора и всех остальных составляющих электрс- [c.323]

    В гальваническом элементе сами по себе равновесные электроды образуют неравновесную систему. Причиной неравнрвесности является разница плотностей электронов в металлах и, следовательно, стремление их переходить от одного металла к другому по внешней цепи. Одновременно во внутренней цепи происходит перенос ионов. Например, если во внешней цепи (рис. 11.2) электроны перемещаются слева направо, то на левом электроде протекает реакция окисления Mi -> +ze , а на правом — реакция восстановления - -ze -> М2. Катионы во внутренней цепи движутся от М к М2. Перенос катионов происходит до тех пор, пока не создается определенное (равновесное) для каждой температуры соотношение концентраций (активностей) электролитов в двух растворах. В качестве примера может служить цинковый элемент Якоби — Даниэля (рис. 11.3). Разомкнутый элемент находится в затормо женном неравновесном состоянии и может пребывать в этом состоянии как угодно длительно. Замыкание электродов металлическим проводником снимает торможение. На Zn-электроде (электрохимически более активном) протекает термодинамически необратимый процесс [c.168]


Смотреть страницы где упоминается термин Проводники, определение: [c.11]    [c.227]    [c.115]    [c.261]    [c.196]    [c.40]    [c.309]    [c.29]    [c.23]    [c.23]    [c.149]   
Общая технология синтетических каучуков (1952) -- [ c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Проводники



© 2025 chem21.info Реклама на сайте