Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен и конденсация

    Рассмотрены типовые технологические процессы (теплообмен, конденсация, сепарация и вымораживание фаз) и результаты их исследования в новых типах аппаратов. [c.2]

    Прп укрупнении установок не устраняются многие недостатки, связанные с многоступенчатостью процессов переработки нефтяного сырья. Так, большое количество энергии затрачивается на неоднократные операции по нагреву, разделению, теплообмену, конденсации и охлаждению потоков нефти и различных продуктов ее переработки. На это требуются соответствующие аппаратура и оборудование, что приводит к большому дополнительному расходу металла, в том числе легированной стали. [c.235]


    Использование пластических масс и других синтетических материалов в химическом машиностроении является одним из проявлений технического прогресса в народном хозяйстве нашей страны. Так, в процессах кристаллизации, упаривания, конденсации, нагрева и охлаждения могут быть использованы теплообменные аппараты из тонкостенных фторопластовых трубок малых диаметров (2,5—6,0 мм) с поверхностью теплообмена 1 —10 м" (рис. 2.18). [c.66]

    Процесс ректификации предназначен для разделения жидких неоднородных смесей на практически чистые компоненты или фракции, которые различаются по температуре кипения. Физическая сущность ректификации, протекающей в процессе перегонки нефти, заключается в двухстороннем массо- и теплообмене между потоками пара и жидкости при высокой турбулизации контактирующих фаз. В результате массообмена отделяющиеся от горячей жидкости пары обогащаются низкокипящими, а жидкость — высококипящими компонентами. При определенном числе контактов между парами и жидкостью можно получить пары, состоящие в основном из низкокипящих, и жидкость — из высококипящих компонентов. Ректификация, как и всякий диффузионный процесс, осуществляется в противотоке пара и жидкости. При ректификации паров жидкое орошение создается путем конденсации части парового потока вверху колонны, а паровое орошение при ректификации жидкости — путем испарения части ее внизу колонны. [c.49]

    На индивидуальных и комбинированных установках АТ, АВТ и ЭЛОУ-АВТ нагрев, испарение, конденсация и охлаждение осуществляют в теплообменниках, подогревателях, кипятильниках или теплообменниках с паровым пространством, конденсаторах и холодильниках. В табл. 31 приведена характеристика теплообменных аппаратов, эксплуатируемых на современных установках АВТ. [c.173]

    Теплопередача в обогреваемом аппарате определяется величиной коэффициента теплоотдачи на стороне конденсации водяного пара высокого давления и значением коэффициента теплоотдачи нагреваемого материала (конвективный теплообмен или кипение). [c.289]

    Выбор давлений и температур в колоннах также обусловливается требованиями к качеству и состоянию целевых продуктов, составом исходного сырья, располагаемыми хладо- и теплоносителями и т, п. За исходный параметр часто принимают температуру конденсации паров в верхней части колонны при атмосферном давлении. Если температура конденсации паров при атмосферном давлении слишком низка, давление повышают. Например, пропан при атмосферном давлении конденсируется при —42 °С, при повышении же давления до 1,9 МПа его температура конденсации становится равной +55 °С. Снижение давления в колонне ниже атмосферного (вакуум) диктуется [ге-обходимостью уменьшения температуры кипения нижнего продукта либо из-за технических трудностей достижения требуемого уровня температуры, либо из-за разложения продукта. Выбор температур определяется также рациональной разницей температур охлаждающей среды и паров в верхней части колонны, теплоносителя и остатка — в нижней части колонны, ибо от этого во многом зависит поверхность теплообменных аппаратов. [c.106]


    ТЕПЛООБМЕННЫЕ ПРОЦЕССЫ-НАГРЕВАНИЕ, ВЫПАРИВАНИЕ, ОХЛАЖДЕНИЕ, КОНДЕНСАЦИЯ [c.132]

    Для предупреждения подобных аварий все детали и узлы компрессорных установок, соприкасающиеся с агрессивной средой, необходимо изготавливать из коррозионностойких материалов или защищать от коррозии соответствующими покрытиями. Прежде всего должна быть защищена от коррозии аппаратура межступенчатых холодильников, в которых происходит конденсация из компримированных газов паров агрессивных веществ,, а также следует защищать поверхность труб теплообменных аппаратов со стороны охлаждающей воды при закрытой циркуляционной системе водоснабжения. [c.182]

    Теплообменная аппаратура в нефтехимических производствах подвергается постепенной забивке. В одних случаях это происходит вследствие полимеризации диеновых углеводородов и конденсации смолообразующих продуктов, в других — из-за оседания по поверхности теплообменников механических включений и биологических обрастаний, содержащихся в охлаждающей воде. Независимо от причины загрязнения нарушается нормальный технологический режим процесса (завышается давление, температура), чаще приходится выполнять трудоемкую и вредную работу по очистке теплообменников. [c.94]

    Метод технологического расчета при помощи номограмм был создан для эндотермических жидкофазных реакций первого порядка, протекающих в непрерывно или периодически действующих реакторах с теплообменом, осуществляемым конденсацией паров при постоянной температуре. Этот метод основан на большом числе решений, выполненных на электронно-счетной машине . [c.155]

    Характер процессов, протекающих в теплообменнике, определяет в значительной степени его конструкцию. Например, в испарителях необходимо обеспечить хороший отвод образующихся паров если теплообмен сопровождается конденсацией паров, то следует предусматривать хороший отвод конденсата от теплообменных поверхностей. [c.82]

    Теплообменными аппаратами называют устройства, предназначенные для передачи тепла от одного теплоносителя к другому для осуществления различных тепловых процессов, например, нагревания, охлаждения, кипения, конденсации или более сложных физ ико-химических процессов — выпарки, ректификации, абсорбции и т. п. [c.7]

    На рис. 3-26 показан стальной эмалированный теплообменный аппарат, предназначенный для конденсации паров и охлаждения жидкостей и газов. Рабочее давление в охлаждающих стака.нах и в аппарате 2 ати. Температура горячего теплоносителя на входе — до 120° С. Аппараты изготавливают с поверх,ностью нагрева 4 или [c.122]

    Теплообменное оборудование. Основными факторами, определяющими особенности прокладки трубопроводов при обвязке теплообменного оборудования, являются весьма широкий диапазон температур и возможность конденсации транспортируемых паров. [c.191]

    Теплообменные аппараты являются составной частью практически всех технологических установок на нефтеперерабатывающих и нефтехимических заводах. Их стоимость составляет в среднем 15% от общей стоимости оборудования технологических установок. Теплообменные аппараты используют для нагрева, испарения, конденсации, охлаждения, кристаллизации, плавления и затвердевания участвующих в процессе продуктов, а также как парогенераторы или котлы-утилизаторы. [c.253]

    Расчет площади теплопередающей поверхности аппаратов, теплообмен в которых сопровождается изменением агрегатного состояния теплоносителей (испарение или конденсация) или определяется условиями естественной конвекции, проводится методом подбора температуры стенки трубы, описанным в примере 6.2. [c.145]

    Общий Любой абсорбционный аппарат (разделение, поглощение, физическая и химическая абсорбция) Любой теплообменный аппарат (конденсация, испарение и т. д.) Химические соединения любого класса [c.61]

    Стоимость теплообменной аппаратуры принималась пропорциональной массе аппарата при заданных значениях коэффициента теплопередачи и температур хладагента или теплоносителя. Для расчета мольной теплоты испарения и конденсации продуктов разделения использовалось правило Трутона. Эксплуатационные затраты рассчитывались с учетом расхода хладагента и теплоносителя, а также энергии на перекачку флегмы. Для учета стоимости вспомогательного оборудования (производственное здание, КИП и т. д.) вводились поправочные коэффициенты к стоимости основного технологического оборудования. [c.299]

    Доля теплообменного оборудования в химических производствах достаточно высокая. Например, каждая из ректификационных колонн, как минимум, снабжена двумя теплообменниками конденсатором и кипятильником. Их количество может быть намного больше, если на стадии проектирования принимаются меры по рациональному использованию энергии. Это многоступенчатая конденсация пара, промежуточные холодильники и т. д. От эффективной работы теплообменной аппаратуры существенно зависит степень использования тепловой энергии. Важно не только точно рассчитать теплообменник, но и обеспечить нормальные условия эксплуатации с высокими коэффициентами теплопередачи. Несмотря на простоту конструкции и достаточную изученность процесса теплопереноса, эксплуатация теплообменной аппаратуры в промышленных условиях довольно напряженная. Трудность состоит в обеспечении высоких коэффициентов теплопередачи, что часто покрывается большими запасами по поверхности тепло- [c.377]


    ППП проектирования теплообменной аппаратуры обеспечивает расчет и выбор стандартных теплообменников кожухотрубчатых, атмосферно-воздушного охлаждения, труба в трубе , пластинчатых для нагрева (охлаждения) однофазных сред, конденсации и испарения одно- и многокомпонентных смесей в присутствии водяного пара и инертных газов, что составляло 85% всех расчетов стандартного оборудования по конструкции и 70% по процессам. [c.566]

    В основу этой модели было положено предположение, что испарение происходит из ядра потока жидкости, а конденсация - с поверхностного слоя пара вблизи границы раздела фаз. Однако авторы лишь качественно исследовали свою модель в связи с отсутствием экспериментальных данных о теплообмене между фазами. [c.138]

    Всякое испарение требует подвода тепла, и, наоборот, конденсация требует отвода тепла, поэтому вполне естественно стремление так осуществить данные процессы, чтобы тепло, выделяющееся при конденсации, могло быть использовано для испарения. Такой теплообмен между парами и жидкостью, где одновременно идут и конденсация и испарение, происходит в аппарате, называемом ректификационной колонной. Контакт между парами, поднимающимися вверх, и жидкостью, стекающей вниз, в ректификационной колонне осуществляется на тарелках. [c.11]

    Потери тепла при теплообмене не позволяют получить достаточное количество льда для конденсации всех паров, подаваемых турбокомпрессором 5, поэтому в схеме предусмотрен вспомогательный холодильный цикл. Сжатый в компрессоре 9 хладагент после конденсации в конденсаторе 10 поступает в испаритель, размещенный в нижней части плавителя. Хладагент, выкипая в испарителе, отнимает тепло от конденсируемых водяных паров. Низкое рабочее давление в аппаратах установки приводит к увеличению удельного объема водяного пара, а следовательно, габаритов аппаратов. [c.9]

    ВЛИЯНИЕ ПРИМЕСЕЙ ПАРАФИНА НА ТЕПЛООБМЕН ПРИ КОНДЕНСАЦИИ ВОДЯНОГО ПАРА [c.51]

    ТЕПЛООБМЕН В ПРОЦЕССАХ КОНТАКТНОЙ КОНДЕНСАЦИИ [c.69]

    ТЕПЛООБМЕН ПРИ КОНДЕНСАЦИИ ОДИНОЧНОГО СВОБОДНО ВСПЛЫВАЮЩЕГО ПУЗЫРЬКА ПАРА В ИНЕРТНОЙ ЖИДКОЙ СРЕДЕ [c.74]

    В термостате / с электроподогревателем 2 и мешалкой 3 помещена емкость 4 с нормальным гексаном. Пары, образующиеся при кипении гексана, через вентиль 5 тонкой регулировки поступают к соплу 6, находящемуся в прозрачном сосуде 7 с водой. При всплывании пузырька в результате разности температур воды и пара происходит теплообмен, пар конденсируется и размеры пузырька уменьшаются. В сосуд 7 помещена шкала 8, позволяющая с помощью киносъемки определить изменение размеров пузырька во времени. Время от момента появления пузырька в сопле до отрыва составляет примерно 0,015—0,03 с. Во избежание конденсации в момент формирования пузырька пар подавался к соплу перегретым на 1—5 С, [c.75]

    В начальный момент конденсации определяющее влияние на теплообмен оказывает теплопроводность жидкости. Поэтому, несмотря на то, что для достижения постоянной скорости всплывания пузырька требуется время порядка 10" с, скорость изменения диаметра пузырька на участке разгона максимальна. Образовавшаяся пленка [c.76]

    В патенте [28] смесь продуктов алкилирования предлагается разделить также в одной сложной ректификационной колонне (рис. -31). Однако, в отличие от патента 27], конденсацию изо-бутаяовой фракции, выводимой в паровой фазе боковым погоном, рекомендуется осуществлять теплообменом с жидкостью в низу изобутановой колонны, которая используется для предварительного разделения исходной смеси изомеров бутана. [c.240]

    Теплообмен в реакторном блоке осуществляется при наличии двухфазной среды (жидкость — пары, газ), агрессивных компонентов (сероводород, водород), относительно высоких температур и дарлений I = 300—400 °С, Р = 3,0—5,0 МПа). В этих условиях следует учитывать конструкцию аппарата зависимость степени испарения (конденсации жидкой фазы в двухфазной смеси) от температуры обвяЁку теплообменников трубопроводами оптимальные скорости потоков в трубном и межтрубном пространствах теплообменника. [c.84]

    Когда происходит теплообмен между однофазными потокаш (неиснаряющиеся жидкости или неконденсирующиеся газы), отступление от этого принцппа, ради удобства трубной обвязки теплообменника, почти не сказывается на эффективности теплопередачи, так как среды физически однородны и влияние конвекции на тенло-съем незначительно. Если же теплообмен связан с исиарением или конденсацией, как это имеет место на установках гидроочпстки, принцип направленной конвекции должен соблюдаться обязательно. В противном случае силы естественной конвекции будут направлены против движения потока (рис. 19). Из-за резкого различия физи- [c.86]

    Остаточное сырье (гудрон) прокачивается через теплообмен — ники, где нагревается за счет тепла отходящих продуктов до темпе — ратуры 320 — 330 °С и поступает в нагревательно — реакционные змеевики параллельно работающих печей. Продукты висбрекинга выводятся из печей при температуре 500 "С и охлаждаются подачей квенчинга (висбрекинг остатка) до температуры 430 "С и направля — ются в нижнюю секцию ректификационной колонны К — 1. С верха этой колонны отводится парогазовая смесь, которая после охлаж— денИ5[ и конденсации в конденсаторах — холодильниках поступает в газосепаратор С—1, где разделяется на газ, воду и бензиновую фракцию. Часть бензина используется для орошения верха К — 1, а балагссовое количество направляется на стабилизацию. [c.51]

    Если необходимо подводить тепло к какой-либо среде, то температура на входе греющего теплоносителя tl должна быть выше температуры /г- Этим определяется, с одной стороны, вид теплоносителя, а с другой сгороны, — его температура и давление. При кипении и конденсации температура ио поверхности теплообмена, где происходят указанные процессы, остается практически одинаковой. При теплообмене без изменения агрегатного состояния вещества температуры теплоносителей, омывающих поверхность теплообмена /, обычно изменяются от начальных температур ю и t2o на входе (/ = 0) до конечных значений температур на выходе tlF и (р2 = Р), причем разность температур обычно также не является постоянной (см. фиг. ]0). [c.12]

    Различные конструктивные мероприятия, увеличивающие теплообмен (например, увеличение эффективной поверхности путем оребрения) должны осуществляться на стороне меньшего коэффициента теплоотдачи. Это производится, например, у газопагрева-теля, в котором газ нагревается насыщенным паром. В данном случае не имеет значения, происходит ли на стороне конденсирующегося пара пленочная конденсация или капельная, несмотря на то, что при капельной конденсации коэффициент теплоотдачи в 10 раз больше. Если вычислить коэффициент теплопередачи в этих [c.155]

    Коэффициент теплопередачи определяется способом, указанным стр. 33. Для ориентировки расчетов приведем некоторые значения коэффициента теплопередачи k при теплообмене в аппарате с греющей рубашкой между насыщенным водяным паром и жидкостью, искусственно не перемешиваемой в сосуде при нагреве воды 250— 950 ккал/м час °С, при нагреве масла 50 -150 ккал/м час °С. Для воды, нагреваемой за счет конденсации органических паров, можно принять /г = 200ч-400 ккал/м час °С. [c.188]

    Иногда в плавающих головках теплообменных аппаратов, предназначенных для конденсации паров агрессивных нефтепродуктов, используются днища (крышки), отлитые из латуни ЛЖМц [c.145]

    Ребристые трубы находят широкое применение при изготовлении теплообменной аппаратуры. При использовании ребристых элементов труб успешно решается большинство проблем, связанных с нагревом, охлаждением и конденсацией сред. Применение ребристых и ошипованных элементов труб экономически целесообразно в таких теплообменных аппаратах, в которых условия теплообмена с одним теплоносителем существенно хуже, чем с другим. В этих случаях, увеличивая поверхность труб со стороны оребрения или ошипования, удается компенсировать низкий коэффициент теплоотдачи ео стороны газа и, следовательно, интенсифицировать процесс теплообмена, уменьшить вес, габариты и стоимость теплообменной аппаратуры, а также эксплуатационные расходы. [c.151]

    Для работы в высокоагрессивных средах (серной и соляной кислот, треххлористого алюминия и др.) в процессах вынарки, конденсации и охлаждения под давлением до 3 ат применяют графитовые теплообменники поверхностью 1,6—240 с прокладками из политетрафторэтилена (тефлона). Такие теплообменники успешно эксплуатируются в СССР на фабриках искусственного волокна, а также на нефтехимических заводах. Применяют теплообменные аппараты из углеграфитового материала — антегмита. [c.270]

    Обратный клапан разгружает компрессор от высокого давления нагнетания при автоматической остановке, а также защищает от прорыва аммиака в рабочее помещение при авариях. Расположенный ниже конденсатора линейный ресивер является сборником конденсата и выполняет две функции сохраняет теплообменную поверхность конденсатора незатопленной и создает запас рабочего тела для компенсации неравномерности расхода жидкости при колебаниях тепловой нагрузки. Автоматическое дроссельное устройство /V постоянно обеспечивает оптимальное заполнение испарителя жидкостью, обычно на уровне верхнего ряда труб. Тепло конденсации аммиака отводится охлаждающей водой, циркулирующей в оборотной системе. Подогретая в конденсаторе вода подается на орошение насадки вентиляторной градирни VII. Охлажденная вода отсасывается насосом VI и подается i трубное пространство конденсатора VIII. [c.174]

    Схема № 3. Компрессорную перекачку с предварительным охлаждением (рис. 102) применяют для дальнего транспортирования. Необходимость выбора такой схемы обусловлена тем. что несмотря на высокое давление подаваемого от источника углекислого газа обычная беском-прессорная или компрессорная перекачка здесь неприемлема, так как указанные схемы приводят к конденсации углекислого газа в трубопроводе и формированию двухфазной смеси. Согласно предлагаемой схеме, двуокись углерода вначале сжимается в компрессорах (линии 1,1 ) и переводится в новое термодинамическое состояние —в область сверхкритической температуры и давления, т. е. в область, где i>tкp и р>ркр. Затем проводят изобарическое охлаждение и конденсацию транспортируемой среды в теплообменном аппарате (линии 2,2 ) в результате чего температура двуокиси углерода становится ниже критической температуры, и сама углекислота переходит в жидкое состояние. В качестве теплообменного аппарата может быть использован либо аппарат воздушного охлаждения, либо теплообменник специальной холодильной установки. Аппарат воздушного охлаждения применим лишь в условиях, если температура окружающего воздуха не превышает 20—25 °С. Только при этом может быть обеспечен перевод охлаждаемой среды в область tособенности нашей страны, схема с аппаратами воздушного охлаждения может быть рекомендована за редким исключением в большинстве районов. [c.170]


Библиография для Теплообмен и конденсация: [c.204]   
Смотреть страницы где упоминается термин Теплообмен и конденсация: [c.32]    [c.186]    [c.86]    [c.89]    [c.138]    [c.170]    [c.311]    [c.11]   
Дистилляция в производстве соды (1956) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние примесей парафина на теплообмен при конденсации водяного пара

ГЛАВА VI Оборудование процессов конденсации и теплообмена i Типы и конструкции теплообменных аппаратов

Глава пятнадцатая. Массо- и теплообмен при испарении, конденсации и химических реакциях

Гомогенная конденсация пара теплообмен

Конденсатор процессов теплообмена и конденсации

Массо- и теплообмен при конденсации из парогазовой смеси

Мреяин, Ф. П. 3 а о с т р о в с к и й. Исследование теплообмена при конденсации пара на вертикальной профилированной трубе

Основные критерии, определяющие процесс теплообмена при пленочной конденсации чистого насыщенного пара

Основные уравнения теплообмена при пленочной конденсации

Особенности теплообмена при конденсации. Данные для расчета поверхности конденсаторов

Отдельные задачи теплообмена прн конденсации пара

Расчет процессов теплообмена и конденсации Определение коэффициентов теплоотдачи

Расчет теплообмена при конденсаци

Расчет теплообмена при конденсации пара

Расчет теплообмена при конденсации чистых паров

ТЕПЛООБМЕН ПРИ ФАЗОВЫХ И ХИМИЧЕСКИХ ПРЕВРАЩЕНИЯХ Глава двенадцатая. Теплообмен прн конденсации чистого пара

ТЕПЛООБМЕН ПРИ ФАЗОВЫХ ПРЕВРАЩЕНИЯХ Глава двенадцатая. Теплообмен при конденсации пара

Теплообмен в потоке при наличии фазовых превращений (кипение, конденсация)

Теплообмен и конденсация на сетчатой тарелке

Теплообмен и конденсация расчет

Теплообмен при конденсации пара

Теплообмен при конденсации пара в труб

Теплообмен при конденсации пара внутри каналов

Теплообмен при конденсации паров

Теплообмен при пленочной конденсации движущегося пара внутри труб

Теплообмен прн пленочной конденсации движущегося пара иа горизонтальных одиночных трубах н пучках труб

Теплообменные процессы — нагревание, выпаривание, охлаждение, конденсация



© 2024 chem21.info Реклама на сайте