Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакрилонитрильные волокна получение прядильного раствора

    Этот метод, как указывалось ранее, основан на наполнении химических волокон карбидообразующими элементами и последующей термической обработке. Карбидообразующий элемент должен находиться в волокнистом материале либо в виде окисла, либо в виде соединения, способного превращаться в окисел при низкотемпературной обработке. При последующей высокотемпературной обработке происходит науглероживание окисла за счет углерода волокна до образования карбида. Возможны два способа введения карбндообразующих элементов в волокно. По одному из них карбидообразующие соединения вводятся в прядильный раствор при формовании получают волокно с равномерно распределенными в нем добавками. Применение этого метода рассмотрено выше на примере получения 51С-волокна и смешанного углерод-кремне-земного волокна. По второму варианту готовое химическое волокно пропитывается растворами карбидообразующих элементов, обычно водны.мн растворами солей, хотя, конечно, не исключено использование органических растворителей. Волокно должно обладать сродствол к растворителю с тем, чтобы было достаточно сорбированной соли для последующего получения карбида. В случае применения водных растворов солей с pH ие менее 7 наиболее приемлемым является вискозное волокно. При использовании в качестве исходного материала полиакрилонитрильного или углеродного волокон можно для пропитки применять растворы солей или расплавы солей с кислой реакцией. [c.346]


    Выбор растворителя при производстве полиакрилонитрильных волокон определяется не только затратами на его получение. Характер растворителя обусловливает технологические особенности процесса производства волокна способ приготовления прядильного раствора, схему регенерации растворителя, выбор материала для изготовления оборудования, режим процесса (концентрацию раствора для формования, температуру и т. д.). Все это в конечном счете отражается на технико-экономических показателях производства полиакрилонитрильных волокон. [c.266]

    Обязательной стадией технологического процесса получения полиакрилонитрильного штапельного волокна является регенерация растворителя из осадительной ванны и из промывных вод. Условия регенерации различны в зависимости от характера применяемого растворителя. Если в качестве растворителя при полимеризации акрилонитрила в растворе или при получении прядильного раствора растворением полиакрилонитрила, синтезированного методом суспензионной полимеризации, используются органические растворители (диметилформамид, диметилацетамид, диметилсульфоксид) с температурой кипения 150—180 °С, то регенерация производится испарением воды из отработанной осадительной ванны и последующей перегонкой органического растворителя. [c.203]

    Полиакрилонитрильные волокна получают различными способами. Эти способы отличаются друг от друга применяемым гомо-или сополимером, типом растворителя, технологией получения прядильного раствора (растворением готового полимера или полимеризацией мономера в растворе), методом формования волокон (из раствора или из расплава), составом осадительной ванны (водные или органические) и т. п. [c.212]

    Мокрый способ формования является основным методом полученпя штапельного полиакрилонитрильного волокна. Условия формования и свойства получаемого волокна значительно изменяются в зависимости от характера растворителя, применяемого прп получении прядильного раствора и состава осадительной ванны. [c.181]

    Характерным отличием метода формования полиакрилонитрильного штапельного волокна от формования других штапельных волокон мокрым способом является большое число растворителей, которые используются или могут быть использованы для приготовления концентрированных прядильных растворов полимеров или сополимеров акрилонитрила. При полимеризации или сополимеризации акрилонитрила в растворе в производственных условиях может использоваться несколько растворителей. При получении прядильных растворов методом растворения полиакрилонитрила, синтезированного методом эмульсионной полимеризации, количество используемых растворителей дополнительно увеличивается. Естественно, что основные параметры процесса формования, в частности состав осадительной ванны, температура и скорость формования, должны быть соответственно изменены. [c.200]


    До недавнего времени полиакрилонитрил применяли главным образом для производства синтетического волокна (орлона). При переработке полимера в полиакрилонитрильное волокно возникают многочисленные трудности, в особенности на стадиях прядения и крашения. В последние годы полиакрилонитрил в чистом виде для этих целей используют реже. Большей частью приготовляют сополимеры, основным компонентом которых является акрилонитрил [8]. Формование акрилонитрильного волокна пз растворов осуществляют по сухому или мокрому способу прядения. Сущность получения волокна из прядильного раствора заключается в том, что из струйки полиакрилонитрильного раствора, продавливаемого через фильеру, образуется нить полимера, а растворитель диффундирует в нагретый воздух или в жидкость. Метод формования волокна из расплава пригоден лишь для сополимера акрилонитрила с изобутиленом. [c.87]

    Прямой способ приготовления прядильных растворов для формования полиакрилонитрильного волокна предусматривает сополимеризацию акрилонитрила с соответствующими мономерами и одновременное получение прядильного раствора. [c.266]

    Приготовление прядильного раствора. Технологическая схема получения прядильного раствора и подготовки его к формованию полиакрилонитрильного волокна (рис. 6.3) принципиально не отличается от аналогичных схем, применяемых при формовании искусственных и других синтетических волокон из растворов. [c.194]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Применение органических осадителей, трудности удаления растворителя из волокна и связанные с этим повышенные расходы растворителя и осадителя, а также высокие энергетические затраты являются очевидными недостатками рассматриваемого производства. Отсутствие полной непрерывности процесса отделки волокна (периодическая запарка) обусловливает снижение производительности труда. В то же время циклогексанон является лучшим среди используемых в промышленном масштабе растворителей ПВХ, и по описанной схеме производится волокно из полимера, имеющего высокие индексы синдиотактичности (более 2—2,2) и молекулярный вес ([т]] более 1,6). Получение прядильных растворов таких полимеров в других используемых в промышленном масштабе растворителях связано с преодолением очень серьезных трудностей, обусловленных необходимостью применения еще более высоких температур растворения и соответствующей термостабилизации полимера. Получаемое волокно имеет наиболее высокие (по сравнению с другими ПВХ волокнами) прочность и теплостойкость. Высокое качество волокна, превосходящего по своим потребительским свойствам некоторые марки полиакрилонитрильных волокон [3], является достаточной компенсацией удорожания производства по сравнению с производством обычных ПВХ волокон. [c.420]


    Несмотря на эти недостатки, диметилформамид применяется в производстве поливинилхлоридных штапельных волокон. Технологический процесс получения этих волокон отличается от процесса получения полиакрилонитрильных волокон тем, что применяется диметилформамид, не содержащий воды, прядильный раствор подогревают до 70° С, концентрацию диметилформамида в осадительной ванне поддерживают выше 80% и промывку волокна ведут в течение более длительного времени. [c.217]

    Состав и свойства прядильного раствора (концентрация полимера в растворе и вязкость) зависят от метода формования волокна. Так же как и при получении всех других химических волокон, прядильный раствор, применяемый для формования полиакрилонитрильного волокна сухим способом, обладает значительно более высокой вязкостью, и соответственно концентрация полимера в растворе выше, чем при формовании мокрым способом. При формовании полиакрилонитрильного волокна мокрым способом вязкость прядильного раствора составляет 200—300 сек. а при формовании сухи.м способом — 600—800 [c.179]

    Состав и свойства прядильного раствора (концентрация полимера в растворе и вязкость) зависят от метода формования волокна. Так же как и при получении всех других химических волокон, прядильный раствор, применяемый для формования полиакрилонитрильного волокна сухим способом, обладает значительно более высокой вязкостью, и соответственно концентрация полимера в растворе выше, чем при формовании мокрым способом. При формовании полиакрилонитрильного волокна мокрым способом вязкость прядильного раствора составляет 300—500 с, а при формовании сухим способом — 600—1000 с (при молекулярном весе полимера 40 000—60 000). Концентрация полиакрилонитрила в прядильном растворе при формовании мокрым способом достигает 18—20%, а при сухом способе — 30—32%. [c.196]

    Желательно, чтобы вязкость прядильных растворов ацетилцеллюлозы находилась в интервале 400—1000 пуаз (при 40°) такое значение типично для условий прядения полиакрилонитрильного волокна и виньона N и соответствует концентрации раствора полимера 20—45%. Несмотря на высокие вязкости прядильных растворов (при комнатной температуре), для получения [c.365]

    Для прядения полиакрилонитрильных волокон применяют как су-хой, так и мокрый методы формования. Методом сухого формования получают волокно орлон . Для прядения готовят 20— 30%-ный раствор полимера в диметилформамиде при температуре 80—100 °С. Полученный прядильный раствор после фильтрации и обезвоздушивания нагревак т до 80— 150 Т (вязкость 600—>800 сек) и продавливают через фильеру с числом отверстий 200—600. Скорость намотки 200—400 м/мин. Одной из важнейших стадий технологического процесса является регенерация диметилформамида. В настоящее время разработан способ, который дает возможность улавливать до 90% паров растворителя. В случае формования модифицированных полиакрилонитрильных волокон, например верела (сополимера акрилонитрила и винилиденхлорида) и дайнела (40% акрилонитрила и 60% винилхлорида), применяется более дешевый растворитель — ацетон. Благодаря низкой температуре кипения ацетона отпадает необходимость проведения процесса при высоких температурах, а следовательно, снижаются энергетические за траты. [c.361]

    Формование полиакрилонитрильного волокна осуществляется из растворов различных растворителей мокрым и сухим способами. Для получения бесцветных прядильных растворов предложено добавлять в раствор восстановительвещества кислого характера Свойства прядильных растворов зависят не [c.716]

    В 1942 г. Рейн в Германии и почти одновременно Хаутц в США предложили новый органический растворитель для получения прядильных концентрированных растворов полиакрилонитрила. Таким растворителем, который не вырабатывался ранее в производственных условиях, оказался диметилформамид, получивший в настоящее время широкое применение в производстве полиакрилонитрильного волокна. [c.169]

    Сущке подвергаются волокна, полученные при формовании мокрым способом из прядильных растворов (гидратцеллюлозные, поливинилспиртовые, полиакрилонитрильные, поливинилхлоридные), или волокна, полученные другими способами, но подвергнутые после формования лромывке (капроновые ). [c.107]

    При получении химических волокон различными методами процесс формования не заканчивается на стадии намотки свежесформованного волокна на приемное устройство. Так, например, при сухом методе формования последующие операции сводятся в основном к удалению остатков летучего растворителя . При формовании волокон из расплава кристаллизующихся полимеров (полиамиды, полиэфиры) выходящее из прядильной шахты волокно, как правило, еще не пригодно для дальнейшей переработки и должно быть подвергнуто ориентационному вытягиванию. При мокром формовании целлюлозных волокон кроме ориентационной вытяжки важной заключительной операцией является удаление воды (сушка) и достижение равновесной влажности. При мокром формовании полиакрилонитрильных волокон процесс последующего ориентационного вытягивания сочетается с процессом смыкания пор, образовавшихся при застудневании раствора (синеретическое отделение жидкости), что приводит к получению более плотного волокна. Для большинства волокон процессы после формования нити включают обычно также и релаксацию внутренних напряжений, возникших вследствие неравновесного протекания ориентационной вытяжки и явлений усадки из-за потери растворителя при сушке. Эти заключительные операции различаются в зависимости от конкретного метода формования волокон. При всей специфике отдельных операций и процессов имеются и такие, которые являются общими для всех видов волокон. К таким процессам относятся в первую очередь ориентация полимера в волокне и релаксация внутренних напряжений. [c.206]


Смотреть страницы где упоминается термин Полиакрилонитрильные волокна получение прядильного раствора: [c.570]    [c.362]   
Физико-химические основы технологии химических волокон (1972) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Полиакрилонитрильное волокно

Прядильные растворы прядильные растворы



© 2025 chem21.info Реклама на сайте