Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость растворов ПАН в различных растворителях

    Влияние минерализации пластовой воды (непосредственно в пласте) на стабильность свойств раствора ПАА, а в итоге на нефтеотдачу, сложнее и неоднозначнее. Увеличение минерализации пластовой воды снижает вязкость раствора (ухудшает полимерный раствор) фазовая проницаемость для раствора при этом, как правило, уменьшается, что способствует повышению коэффициента нефтеотдачи. Результирующий эффект может быть различным в зависимости от свойств пластовой воды, пористой среды, типа полимера, свойств растворителя и концентрации раствора. [c.110]


    Согласно (167.2) переход от растворителя с меньшей вязкостью к растворителю с большей вязкостью сопровождается снижением скорости движения иона и его подвижности. Количественная связь величин вязкости растворителя и электрической проводимости раствора электролита выражается правилом Писаржевского — Валь-дена если считать, что радиус иона постоянен в различных растворителях, то для разбавленных растворов [c.464]

    Влияние свойств и состава растворителя на качество растворов. В качестве растворителя используют пресные и минерализованные воды с различной степенью кислотности pH и минерализации. Растворы технического полиакриламида и других полимеров в воде проявляют свойства полиэлектролитов, поэтому их вязкость зависит от наличия низкомолекулярных электролитов. Соли, имеющиеся в растворителе, обычно снижают вязкость раствора (рис. 4.5, 4.6, 4.7). Вероятность содержания хлорного железа, хлористого кальция и хлористого натрия и соответствующих ионов в закачиваемых растворах полимеров на практике достаточно высока. Например, ионы железа в водные растворы ПАА могут попадать как на стадии их приготовления, так и в процессе движения раствора по промысловым коммуникациям и в нагнетательных скважинах. Уменьшение вязкости растворов при использовании в качестве растворителя минерализованной воды вместо пресной наблюдается и для других типов полимеров. Например, даже незначительная минерализация, которой обладает водопроводная и озерная вода, способствует существенному снижению вязкости гипана (рис. 4.8). Кривые вязкости и pH растворов для кислых сред (рН<7) имеют четкую взаимозависимость (см. рис. 4.5). Это в определенной степени объясняет закономерности изменения вязкости в минерализованных растворителях. По мнению исследователей этой проблемы в кислой среде происходит подавление диссоциации карбоксильных групп полимера, и цепочка молекулы сворачивается в клубок . С возрастанием pH раствора в результате усиления диссоциации карбоксильных групп происходит увеличение вяз- [c.106]

    Изучение вязкости разбавленных растворов полимеров может дать косвенную информацию о молярной массе полимеров. В уравнении Эйнштейна (XVI.2.3), описывающем зависимость вязкости от концентрации, оказалось что для растворов ВМС коэффициент к этого уравнения зависит от степени полимеризации ВМС. Вязкость растворов ВМС одного полимер-гомологического ряда с различной относительной молярной массой в одном и том же растворителе различна, т. е. удельная [c.442]


    Кривые, приведенные на рис. 16, поясняют возможность характеризовать структуру исследуемых высокомолекулярных соединений с помощью уравнения (100). Из данных по вязкости растворов различных полиэфиров, отличающихся пространственной конфигурацией, видно, что в одном и том же растворителе, например в хлороформе, хорошо сольватирующем полиэфиры, форма макромо- [c.176]

    Кристаллизация твердых углеводородов и рост кристаллов зависят, как известно, от различных причин, к которым относятся а) характер твердых углеводородов, б) вязкость раствора масла в растворителе, в) температура предварительной термической обработки, г) скорость охлаждения. [c.209]

    В данной работе следует изучить влияние температуры на электропроводность и вязкость растворов электролитов в воде или в различных органических растворителях. По экспериментальным данным [c.282]

    Были получены концентрационные зависимости динамической вязкости олигомеров в среде различных растворителей. Показано, что в водных растворах по сравнению с органическими наблюдается смещение начала структурообразования в область пониженных концентраций. [c.93]

    Концентрация клея зависит от его назначения. Для изготовления ненаполненных клеев требуется повышенный расход растворителя, так как вязкость их растворов выше вязкости растворов наполненного клея при одной и той же концентрации. Клеи из различных каучуков при одинаковой концентрации имеют различную вязкость, так как на вязкость большое влияние оказывают средний молекулярный вес н структура каучука. Предварительная пластикация натурального каучука приводит к значительному понижению вязкости раствора (клея) и, следовательно, к уменьшению расхода растворителя для получения клея определенной вязкости, но одновременно с этим пластикация приводит к значительному понижению прочности клеевой пленки и к понижению прочности склеивания при применении такого клея. [c.322]

    В ряде случаев для обозначения одних и тех же величин используют различные термины. В табл. 3.1 приведены термины, наиболее часто используемые для обозначения вязкости растворов, и соответствующие им математические выражения. К сожалению, очень часто в технической литературе не указываются такие важные факторы, как, например, природа используемого растворителя. [c.75]

    Полимерные растворы могут быть разбавлены растворителем, который не растворяет данный полимер. Такие растворители называют разбавителями. Они способствуют растворению полимера и снижают вязкость растворов. Эффективность разбавителя оценивается числом разбавления — количеством разбавителя, которое молою добавить в раствор до осаждения высокомолекулярного соединения. Если при растворении полимера в растворителе образуются вязкие растворы, обладающие липкостью, то такие растворы можно использовать как клеи. В процессе реставрации экспонатов из различных материалов находят применение растворы в ацетоне ПБМА или ПВБ. Оба эти полимера безопасны для экспонатов и дают прочные склейки. [c.39]

    Значительная вязкость растворов с перечисленными растворителями влечет за собой большие потери жидкостей при различных переливаниях и процеживаниях, поэтому растворы готовят непосредственно в отпускных склянках. Процеживают растворы только сквозь марлю и лишь в самых крайних случаях. [c.177]

    Трехгорлую колбу емкостью 100 мл, снабженную мешалкой и вводом для азота, откачивают и заполняют азотом 3 раза. Приготавливают следующие растворы а) 500 мг олеата натрия (или лаурилсульфата натрия) в 16 мл деаэрированной воды б) 125 мг (0,32 ммоль) Ре(N1 4)2(504)2 и 125 мг пирофосфата натрия в 4 мл деаэрированной воды (для создания буфера). Этот раствор встряхивают в течение 15 мин при 60—70 °С и затем выливают в колбу вместе с раствором, указанным в пункте а . После охлаждения до комнатной температуры в колбу вносят 20 мл (0,2 ммоль) изопрена, перегнанного в атмосфере азота и содержащего 50 мг (0,21 ммоль) перекиси бензоила. Сильное перемешивание способствует образованию стабильной эмульсии, вязкость которой возрастает во времени. После 6-часовой выдержки при комнатной температуре изопрен почти полностью полимеризуется. Полимер высаживается в виде хлопьев из латекса при добавлении эмульсии по каплям к 500 мл метанола, в котором содержится 500 мг М-фенил-Р-нафтиламина, необходимого для стабилизации полиизопрена образование осадка можно усилить добавлением в осадитель нескольких капель соляной кислоты. После фильтрования с отсасыванием и промывки метанолом прочный эластичный образец высушивают в вакуумном сушильном шкафу при 50 °С. Определяют растворимость полученного полимера в различных растворителях, измеряют характеристическую вязкость в растворе толуола при 25 °С, содержание 1,2- и 1,4-звеньев в цепи, а также соотношение цис- и тро яс-структур (см. опыт 3-30). Сопоставьте полученные данные с результатами полимеризации изопрена под действием бутиллития (опыт 3-30). [c.137]

    При сравнении любых свойств растворов п разных растворителях нельзя пользоваться весовыми долями, величины которых зависят от плотности взятой жидкости Концентрацию раствора следует выражать в мольных или объемных долях В первом случае сравниваются свойства растворов при одном и том же содержании молекул растворителя, со втором —при одинаковой степени заполнения объема различными по природе жидкостями Вязкость растворов Правильнее сравнивать при равных объемных долях. [c.422]


    На рис. 184 приведены кривые концентрационной зависимости наибольшей ньютоновской вязкости для растворов типичного представителя гибкоцепных полимеров — полиизобутилена — с различных растворителях Из рисунка следует, что максимально пяз- [c.422]

    Описанная выше расчетная схема позволяет достаточно точно оценить вклад каждого атома и различных атомных группировок, обладающих специфическим межмолекулярным взаимодействием, в энергию когезии вещества. В связи с этим метод применяется и для расчета плотности энергии когезии полимеров, исходя только из химического строения повторяющегося звена. Результаты расчета для представителей разных классов полимеров приведены в табл. 7.5 вместе со значениями б, полученными в работе [87] на основании зависимости характеристической вязкости [ti] растворов полимеров в различных растворителях от параметра растворимости растворителя бр. [c.231]

    Характеристическая вязкость привлекла к себе наибольшее внимание по сравнению с другими вязкостями , поскольку через эту величину можно вычислить молекулярный вес полимера. Чтобы найти характеристическую вязкость, надо измерить вязкость растворов с различным разведением и вязкость чистого растворителя. Затем строится график зависимости 1 р1с от концентрации, подобный тому, который показан на рис. 19. Верхняя линия показывает определение характеристической вязкости экстраполяцией к нулевой концентрации значений приведенной вязкости, а нижняя—значений лога- [c.100]

    Характер изменения вязкости полимеров в бинарном растворителе зависит от различных факторов, в особенности от концентрации (рис. 13). При концентрации раствора сополимера винилхлорида с винилацетатом 5 % увеличение содержания плохого растворителя толуола приводит к понижению вязкости подобно тому, как это происходит в разбавленных растворах. При концентрации сополимера 10—20 % вязкость растворов проходит через минимальное значение, как это наблюдалось в случае раствора сополимера винилхлорида с винилиденхлоридом в смеси нитропропан — толуол (см. рис. 12). Совершенно иной характер носит зависимость вязкости 25 %-ных растворов от состава растворителя. Характерной особенностью таких систем является резкое снижение [c.80]

    Кроме содержания азота, большое практическое значение имеют н арутие свойства нитроцеллюлозы растворимость н набухание в различных растворителях степень полимеризации (вязкость растворов) термическая стоГжость, [c.349]

    Оказалось интересным сопоставление меледу собой кривых вязкости растворов различных полимеров в одном и том же растворителе. Это сделано на рис. 4, где приведены данные для растворов в масле веретенном 3 суперола, винипола, СК и присадки ПБФ. Для сравнения на этом рисунке нанесены пунктирные кривые обычных минеральнх масел, имеющих различную вязкость при температуре 100°. Растворы же высокополимеров при той же вязкости при температуре 100° нанесены путем интерполяции с помощью упомянутых выше изотерм логарифма вязкости. [c.257]

    В данной работе следует изучить влияние температуры на электропроводность н вязкость растворов электролитов в воде пли и различных ор1 анпческих растворителях. По эксперпментальн1>1м данным [c.282]

    При определении растворимости следует иметь в виду, что полимеры обычно либо полностью растворимы, либо практически нерастворимы или только ограниченно набухают в растворителе. Качество растворителя определяется не константой равновесия между растворенным веществом и осадком, как для низкомолекулярных соединений, а тем количеством осадителя, которое при добавлении к раствору вызывает начало выпадения полимера. Конечно, более точным является сравнение значений второго вири-ального коэффициента для различных систем полимер — растворитель [42] или сравнение значений вязкости раствора полимера в разных растворителях (см. раздел 2.3.2.1). [c.68]

    Существенный прогресс в формировании представлений о макроструктуре асфальтенов, а также методах разделения их по молекулярным весам позволил приступить к исследованию влияния на свойства битумов не вообще асфальтенов, а отдельных их фракций, резко отличающихся по своим физическим свойствам [30]. Были исследованы три битума босканский асфальтенового основания (Венесуэла), Мидуэй спешиал нафтенового основания (Калифорния) и Сафания парафинового основания (аравийский). Деасфальтизацией этих битумов м-пентаном были выделены асфальтены, которые резко различались по составу и характеру. Образцы фракционировались методом препаративной хроматографии на геле, готовились растворы асфальтенов и их фракций в различных растворителях. Затем определялась зависимость вязкости растворов от концентрации, молекулярного веса и структуры асфальтенов, растворяющей способности растворителя с целью вы- [c.197]

    Наилучшим органическим растворителем для эксклюзионной хроматографии синтетических полимеров по комплексу свойств является тетрагидрофуран. Он обладает уникальной растворяющей способностью, низкой вязкостью и токсичностью, лучше многих других растворителей совместим со стирол-дивинил-бензольными гелями и, как правило, обеспечивает высокую чувствительность детектирования при использовании рефрактометра или УФ-детекгора в области до 220 нм. Для анализа высокополярных и нерастворимых в тетрагидрофуране полимеров (полиамиды, полиакрилонитрил, полиэтилен-терефталат, полиуретаны и др.) обычно используют диметилформамид или м-крезол, а разделение полимеров низкой полярности, например различных каучуков и полисилок-санов, часто проводят в толуоле или хлороформе. Последний является также одним из лучших растворителей при работе с ИК-детектором. о-Дихлорбензол и 1,2,4-трихлор-бензол применяют для высокотемпературной хроматографии полиолефинов (обычно при 135 С), которые в других условиях не растворяются. Эти растворители имеют очень высокий показатель преломления, поэтому иногда их целесообразно использовать вместо тетрагидрофурана для анализа полимеров с низким коэффициентом преломления, что позволяет повысить чувствительность при детектировании рефрактометром. [c.47]

    Рассмотрим действие давления на полимеризацию метилметакрилата СН2ССН3СООСН3 полиметилмета-крилат широко применяется в различных отраслях промышленности. При исследовании этой реакции в интервале давлений до 500 МПа и температур от 50 до 200 °С было показано, что рост давления ускоряет процесс полимеризации и увеличивает степень полимеризации продукта. Повышение температуры и увеличение концентрации катализатора, как всегда, ускоряют полимеризацию, но и снижают относительную молекулярную массу полимера. Данные работы, подтверждаюш,ие этот вывод, приведены в табл. 25. Степень полимеризации, а значит, и относительная молекулярная масса полимера оценивались по вязкости раствора продукта реакции в определенной массе растворителя. Чем крупнее молекулы продукта, тем выше вязкость раствора. Оценка степени полимеризации определяется по калибровочному графику, связывающему вязкость раствора с относительной молекулярной массой растворенного полимера. [c.197]

    Очень жесткие цепи, ио-видимому, даже в разбавленных растворах в клубки не свора-чиваются и в различных растворителях имеют близкие формы и размеры. Поэтому для таких полимеров наблюдаются одинаковые значения характе ристичсской вязкости в растворах п разных растворителях. [c.416]

    В 1927 г. была пущена первая установка депарафинизации растворителями на заводе Индиан Рифайнинг в Лоуренсвилле, Иллинойс [54]. В качестве растворителя применяли смесь бензол—ацетон. Основой процесса является применение экстрактивной кристаллизации для очистки дистиллятных масел. Процессы депарафинизации растворителями быстро нашли широкое применение. Для этого были предложены и использовались различные растворители (например, пропан, смесь метилэтилкетопа с бензолом, метил-к-бутил-кетон). Процессы депарафинизации растворителями повышают четкость разделения, что приводит к увеличению выхода депарафинированных масел и снижению содержания масла в неочищенном парафине. Растворитель снижает вязкость маточного раствора кроме того, становится возможной промывка лепешки парафина дополнительным количеством растворителя. Эти процессы применимы для депарафинизации значительно более широкого ассортимента масляных дистиллятов, в связи с чем стало возможным перерабатывать средние н тяжелые дистиллятные масла и во многих случаях полностью отказаться от переработки остаточных масел. [c.53]

    В табл. 6.1 приведены данные по приведенной вязкости ряда поли-1,3,4-оксадиазолов, синтезированных как двухстадийными методами, так и одностадийной полициклизацией в ПФК. Из таблицы видно, что все эти методы можно использовать для синтеза полиоксадиазолов. Однако наилучшие результаты получались при одностадийном методе синтеза. В оптимальных условиях полициклизации молекулярные массы получаемые полиоксадиазолов могут достигать 300 ООО [62]. Одностадийной полициклизацией диангидрида 1,4,5,8-нафталинтетракар-боновой кислоты и анилинфталеина в растворе различных органических растворителей в присутствии в качестве катализаторов бензойной кислоты и различных замещенных бензойных кислот удалось получить полиимид с шестичленными имидными циклами и высокой молекулярной массой 100 ООО [47]. [c.211]

    Из уравнения (1) видно, что глубина пропитки обратно пропорциональна корню квадратному из вязкости раствора консерванта. Поэтому при консервации старых, частично разрушенных материалов, где необходима пропитка на всю глубину разрушенного и истично неразрушенного слоя, низкое значение вязкости растворов консервантов является существенным фактором. Ниже приведена относительная вязкость растворов полимеров в толуоле (где г] — вязкость pa i вязкость растворителя) различной концентрации С  [c.24]

    Значение Мч, всегда больше, чем Мп наличие в полимере фракций с различной молекулярной массой м жет быть охарактеризовано коэффициентом полидисперсности М /Мп. Чем уже кривая молекулярно-массового распределения, тем ближе это соотношение к единице. Измерение вязкости растворов полимеров позволяет огфеделить так J aзывaeмyю средневязкостную молекулярную массу Му. Значение Му занимает промежуточное положение между и Му и зависит от используемого растворителя. [c.317]

    Очень жесткие цепи, по-ви-димому, даже в разбавленных растворах в клубки не сворачиваются и в различных растворителях имеют близгсне формы и размеры. Поэтому для таких полимеров наб.тюдаются одинаковые значения характе- ристичсской вязкости в растворах в разных растворителях, Значительное влияние оказывает растворитель на концентрационную зависимость приведенной вязкости, т. е. на величину тангенса угла наклона прямой = / (с) эта величииа выражается вторым членом уравнения (24), Константа к характеризует взаимодействие полимер с растворителем, [c.416]

Рис. УТ1. 7. Зависимость вязкости растворов фтороила-СТЗ-42Л в различных растворителях от концентрации и молекулярной массы (Потн) полимера. Рис. УТ1. 7. <a href="/info/708251">Зависимость вязкости растворов</a> фтороила-СТЗ-42Л в <a href="/info/352836">различных растворителях</a> от концентрации и <a href="/info/532">молекулярной массы</a> (Потн) полимера.
    Малая вязкость среды, обеспечивающая достаточную подвижность структурных элементов, и небольшие скорости кристаллизации способствуют образованию одиночных кристаллов, а большие— образованию сферолитов. Применяя различные растворители и различные способы выделения полимера из раствора (охлаждение нагретого раствора, испарение растворителя осаждение полимера), Каргин с сотр. изменяли структуру приго- товлейных ими поликарбонатных пленок в широких пределах. О значении природы растворителя при образовании тех или иных полиморфных кристаллических форм говорилось выше. [c.444]

    Константы кц, кц скорости нарастания вязкости, полученные из уравнений (1) и (2), отражают совокупность различных стадий процесса структурирования растворов комплексов, протекающих параллельно и последовательно. Формирование надмолекулярной структуры растворов комплексов при взаимодействии алкоксидов бора и лития включает такие основные стадии, как образование мономерного комплекса, ассоциация его по литий-кисло-родной связи и алкильным фрагментам, ассоциация молекул растворителя под влиянием комплекса. Образование Li[i-С4НдОВ(ОК)з] ионной структуры и ассоциация его по Li. .. О связи происходят, очевидно, спонтанно и очень быстро. Суммарная скорость этих стадий зависит от концентрации исходных алкоксидов бора и лития. Лимитирующими стадиями скорости структурирования являются межмолекулярная ассоциация комплексов по алкильным заместителям, ориентация и упаковка молекул растворителя, которые приводят к повышению вязкости растворов. Поэтому к , полученная из зависимости т) = f( o) и в большей степени отражающая скорость образования комплекса, ассоциированного по Li. .. О связи, намного выше /сп скорости роста вязкости, которую в основном определяют более медленные стадии. Однако скорости медленных и быстрых стадий процесса структурообразования в растворах взаимозависимы. Следовательно, подставив значение dr /dx пз уравнения (2) в уравнение (1),  [c.52]


Смотреть страницы где упоминается термин Вязкость растворов ПАН в различных растворителях: [c.107]    [c.167]    [c.107]    [c.167]    [c.33]    [c.78]    [c.249]    [c.179]    [c.211]    [c.422]    [c.422]    [c.24]    [c.180]   
Карбоцепные синтетические волокна (1973) -- [ c.49 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость растворов ВМС

Вязкость растворов ПАН в различных

РАЗЛИЧНЫЕ РАСТВОРИТЕЛИ



© 2025 chem21.info Реклама на сайте