Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прядильные растворы свойства

    Добавление хлористого натрия в прядильные растворы вызывает складчатость, сильное изгибание полипептидных цепей, что снижает вязкость из-за ослабления молекулярных взаимодействий. Это складывание, или свертывание, макромолекул маскирует реакционные участки и тем самым влияет на механические свойства волокон, которые становятся менее прочными [13]. [c.541]

    На рис. 7.7. представлена фотография струи при свободном истечении. Диаметр струи в зоне максимального расширения в 1,8—2,5 раза больше диаметра капилляра. Среди большого числа гипотез, выдвинутых для объяснения рассматриваемого явления, наибольшее признание получили объяснения, основывающиеся на эластических свойствах прядильных растворов 8]. В частности, наиболее наглядное представление о механизме расширения можно получить при анализе нормальных напряжений, возникающих при течении вискозы через капилляр. Поместим рассмотренный ранее в разделе 5.2.2 элементарный объем вязко-упругой жидкости в сдвиговое механическое поле, которое образуется при течении вискозы через капилляр (рис. 7.8), На гранях этого объема будет возникать нормальное напряжение Рц, направленное вдоль оси капилляра, и напряжение Р22, вызывающее давление на стенку капилляра [11, с. 239]. При выходе раствора из капилляра в результате указанных напряжений на раствор действуют две силы осевая /1 и нормальная /2. Равнодействующая этих сил fp направлена под углом к оси ка- [c.172]


    Расширение струй зависит от всех параметров, влияющих на эластические свойства вискоз. На рис. 7.11 показана зависимость расширения струй от скорости истечения для вискоз с различной вязкостью, вытекающих из капилляра диаметром 0,5 мм. В случае низковязкого (0,18 Па-с) прядильного раствора (кривая/) наблюдается слабо выраженный максимум в области скоростей истечения 200 см/с. Появление максимума хорошо объясняется теорией расширения струй, в основе которой лежат представления об эластических свойствах жидкостей [19, с. 105]. В среднем диапазоне вязкостей от 2 до 9 Па-с наблюдается четко выраженный максимум. Изменение величины расширения здесь хорошо передается кривой 2 для вязкости 3,7 Па-с. При повышении вязкости более 12 Па-с диаметры струй резко возрастают. В практически достижимом диапазоне скоростей истечения (до 800—1000 см/с) при этих вязкостях максимума обнаружить не удается. [c.174]

    Способность к стабильному образованию струй имеет большое значение в производстве, так как от этого зависит обрывность, а следовательно, производительность труда и качество продукции. Это свойство прядильных растворов обычно называют прядомостью. Для определения прядомости предложено большое число методов. Наибольшее распространение получил метод Тиле [26]. Он заключается в определении длины жидкой струи, вытягиваемой стеклянной палочкой из вискозы при стандартных условиях. Чем больше струи, тем лучше прядомость. Однако этот метод не в полной мере отражает реальные условия, которые наблюдаются при формовании. Это обусловлено тем, что в производственных условиях на формующуюся жидкую нить действует дополнительно ряд сил поверхностное взаимодействие прядильного раствора с фильерой и осадительной ванной, гидродинамическое сопротивление. При вытягивании нити стержнем из прядильного раствора эти силы не действуют. Поэтому более надежным методом характеристики прядомости является определение максимальной фильерной вытяжки, когда элементарные струи прядильного раствора подвергаются одновременно действию поверхностных сил и продольной деформации [27]. В зависимости от вязкости вискозы преобладает влияние того или иного фактора. [c.179]

    При производстве вискозных волокон применяют прядильные растворы с содержанием целлюлозы 9,0—9,5%) и шелочи 6,0— 6,5%. Количество сероуглерода при ксантогенировании снижают до 32—34%. Вязкость вискозы составляет 4,4—5,6 Па-с. Предпринимаются попытки дальнейшего удешевления состава вискоз. Дополнительное снижение содержания щелочи и сероуглерода нецелесообразно, так как ниже указанных пределов наблюдается значительное ухудшение качества вискоз, что приводит к затруднениям при фильтрации и повышенной обрывности при формовании. С другой стороны, увеличение содержания целлюлозы без повышения вязкости, т. е. за счет снижения СП ниже 280—300, недопустимо из-за резкого ухудшения потребительских свойств волокон. Наиболее перспективным, по-видимому, будет переход на высоковязкие вискозы с содержанием целлюлозы 11—12%, и вязкостью 31—38 Па-с. В этом случае при сохранении СП на существующем уровне представится возможным уменьшить отношение щелочи к целлюлозе до 0,50—0,55. Правда, переход на высоковязкие вискозы потребует усиления мощности приводов раство- [c.279]


    Поэтому все измерения, цель которых состоит в сравнение. растворов различных полимеров, должны проводиться не сразу после охлаждения, нагревания, упаривания, введения новых добавок и т. д., а лишь после того, как свойства перестали изменяться.] Для достижения такого состояния в концентрированных растворах у которых диффузия макромолекул затруднена, может потребой ваться несколько месяцев. Поэтому при научных исследования предпочитают работать с разбавленными растворами, где равновесие устанавливается значительно быстрее. На производстве же значение указанных факторов особо велико, ибо там широко применяются концентрированные растворы (резиновый клей, прядильные растворы, лаки и т. д.). [c.484]

    Практически все волокна, формуемые из растворов полимеров (вискозное, ацетатное, полиакрилонитрильное, хлорвиниловое и др.), могут быть окрашены пигментами. Задача в этом случае сводится к подбору красящих веществ, обеспечивающих оптимальные свойства окрасок, и к разработке специальных для каждого вида волокна выпускных форм красителей, обеспечивающих устойчивость дисперсионного состава пигмента при распределении в полимере. Некоторые волокна могут быть окрашены красителями, растворимыми в прядильном растворе. [c.189]

    Такие полимеры обычно синтезируют, исходя из хлорангидри-дов дикарбоновых кислот, поскольку на практике трудно осуществить прямую конденсацию в расплаве свободных дикарбоновых кислот с диаминами. Широко изучались свойства различных сополимеров с целью изыскания материалов, которые были бы достаточно хорошо растворимы в растворителях, используемых для получения прядильных растворов, обладали способностью к ориентационной вытяжке на обычных крутильно-вытяжных машинах и в то же время сохраняли высокую температуру плавления (выше 400 °С). Гомополимеры, особенно с ара-расположением заместителей в ароматическом ядре, во многих случаях трудно перерабатывать в волокно. [c.348]

    Свойства прядильных растворов условия переработки их в волокна и свойства белковых волокон [c.90]

    Попытки формования волокна из прядильного раствора полиакрилонитрила в концентрированной серной кислоте не дали положительных результатов. Полиакрилонитрил в серной кислоте постепенно гидролизуется, вследствие чего получаемое волокно обладает низкими механическими свойствами. [c.176]

    Мокрый способ формования является основным методом полученпя штапельного полиакрилонитрильного волокна. Условия формования и свойства получаемого волокна значительно изменяются в зависимости от характера растворителя, применяемого прп получении прядильного раствора и состава осадительной ванны. [c.181]

    Аналогично тому, как в производстве вискозного и ацетатного шелка свойства конечных продуктов определяются в значительной степени прядильным раствором (например, степенью полимеризации и другими факторами), при производстве полиамидных нитей нх свойства обусловлены качеством полимера. [c.287]

    Часто С. п. превосходят атактич. и изотактич. полимеры по своим свойствам. Так, поливинилхлорид с повышенным содержанием синдиотактич. звеньев обладает более высокой, чем атактич. полимер, темп-рой размягчения (выше 150°). Растворимость в воде пленок из синдиотактич. поливинилового спирта, подвергнутых термообработке при 100° (30 мин.) и 180 (5 мин.), составляет соответственно 22,85 и 0,30%, тогда как атактич. полимер, обработанный в таких же условиях, растворяется полностью. Волокна из синдиотактич. поливинилового снирта обладают повышенными механич. свойствами, однако прядильные растворы С. п. винилового спирта недостаточно стабильны. [c.439]

    В процессах переработки высоковязких полимерных жидкостей, например растворов полимеров при получении химических волокон и пленок, важнейшей стадией является удаление диспергированного и растворенного газа [1]. Из приведенных в таблице свойств некоторых прядильных растворов полимеров видно, что они обладают очень высокой вязкостью, а изменение поверхностных свойств должно приводить для ряда растворов к образованию агрегативно-устойчивых газовых эмульсий и пен. [c.119]

    СОПОСТАВЛЕНИЕ СВОЙСТВ ПБА-ВОЛОКОН, ПОЛУЧЕННЫХ ИЗ высоко- и НИЗКОКОНЦЕНТРИРОВАННЫХ ПРЯДИЛЬНЫХ РАСТВОРОВ [10]  [c.119]

    СОПОСТАВЛЕНИЕ СВОЙСТВ ПБА-ВОЛОКОН. ПОЛУЧЕННЫХ ИЗ ИЗОТРОПНЫХ и АНИЗОТРОПНЫХ ПРЯДИЛЬНЫХ РАСТВОРОВ [5]  [c.119]

    Влияние натяжения вдоль пути формования иллюстрирует рис. VII.9, б, который свидетельствует о сильном влиянии воздушной прослойки или фильерной вытяжки на механические свойства волокон (в отличие от ПБА). Этот результат подчеркивает то, что растяжение в процессе формования дает свой вклад в увеличение ориентации, уже достигнутой в прядильном растворе при сдвиге [c.166]

    Перед растворением ацетилцеллюлозу различных партий смешивают для обеспечения равномерности свойств прядильного раствора и, следовательно, получаемого из него волокна. Эту операцию выполняют на складе, где ацетилцеллюлоза хранится в специальных башнях (силосах). Смешивание достигается путем циркуляции ее в силосах при помощи системы дозаторов и шнеков. В результате механических воздействий ацетилцеллюлоза измельчается, и поэтому отпадает необ.ходимость в до Полнительном измельчении ее перед растворением. Со склада ацетилцеллюлоза при помощи пневмотранспорта или элеватора и системы шнеков подается в загрузочные бункера растворителей. [c.122]


    Раствор ацетилцеллюлозы из химического цеха по общему трубопроводу 1 поступает в цех формования волокна. Затем при помощи зубчатого насосика 2 раствор подается через све-чевой фильтр 3 и трубку-червяк 4 в фильеру 5. Для снижения вязкости прядильного раствора, увеличения скорости испарения ацетона при формовании волокна и улучшения эластичных свойств волокна раствор перед фильерой подогревается в специальном нагревателе (головке машин). [c.131]

Таблица 8. Свойства прядильных растворов п ол на крило нитрила Таблица 8. Свойства прядильных растворов п ол на крило нитрила
    Чтобы повысить способность белков к влажному прядению и улучшить органолептические свойства волокон, в прядильные растворы перед филированием вводили некоторые добавки. Так, при введении небольшого количества клейковины увеличивается механическая прочность волокон [35]. Добавление в прядильные растворы липидов непосредственно перед экструзией через фильеру для ослабления омыления повышает сочность и делает волокна более мягкими по консистенции [57]. Желатинированный крахмал повышает водоудерживающую способность и облегчает повторную гидратацию волокон, сохраняемых в сухом состоянии [76]. [c.538]

    Степень денатурации белков находится в тесной связи с pH прядильного раствора, который влияет не только на реологические свойства и пригодность этих растворов к филированию, но и на текстуру получаемых волокон (рис. 11.4). [c.541]

    Филирование белков влажным способом по технологии Бойера связано с рядом неудобств. Этот способ пригоден для обработки только очищенных белков, а поэтому часто дорогостоящих, с выраженной пригодностью к филированию. Способ не дает возможности текстурировать белки, трудно поддающиеся очистке, независимо от того, находятся они в виде муки или концентратов, и белки, которые плохо филируются после таких видов технологической обработки, как химический или ферментативный гидролиз. Данный технологический процесс предполагает также денатурацию белков при высоких pH, что может приводить к изменению питательных свойств получаемого волокнистого продукта [20]. Этих затруднений можно избежать, вводя в прядильные растворы в качестве агента текстурирования полисахариды в количестве нескольких процентов. В этом случае белки входят в состав волокон просто как наполнитель. [c.543]

    Первые опыты по совместному филированию полисахаридов и белков проведены на альгинатах, линейных полимерах манну-роновой и гулуроновой кислот, извлеченных из водорослей, и на пектинах, состоящих из цепей галактуроновой кислоты, этери-фицированных метиловыми радикалами [47]. Эти молекулы, натриевые соли которых растворимы в воде, мгновенно выпадают в осадок в форме солей кальция. Данное свойство позволяет при pH, близких к нейтральным, приготавливать прядильные растворы, которые после экструзии через фильеры коагулируют в обрабатывающих растворах, содержащих хлористый или уксуснокислый кальций. Этот способ совместного филирования был распространен также на каррагенаны макромолекулы, образованные присоединением сульфатированной галактозы, которые [c.543]

    Технология сухого прядения волокон белков, разработанная Ланге [56], состоит в приготовлении пластичной массы путем растирания и перемешивания белков сои, сульфита натрия и пластификатора, например глицерина, в присутствии 30—50 % воды. Смесь при температуре от 90 до 140 °С экструдируют в воздух через сопла, фиксируя ее структуру простым охлаждением. Этот процесс позволяет обходиться не только без коагуляционного раствора, но и без приготовления щелочного прядильного раствора. Использование белкового изолята необязательно, однако для непрерывного получения белковых нитей и хороших механических свойств необходимо, чтобы содержание белка в сырье превышало 70 % сухой массы. [c.545]

    Формование волокна. Формование вискозного волокна, как принято в производстве химических волокон, называют прядением, а вискозу, соответственно, - прядильным раствором. Формование - важнейшая стадия технологического процесса, условия которой определяют структуру и свойства волокна. Формование осуществляют мокрым способом, т.е. прядильный раствор продавливают через фильеры (нитеобразователи) с отверстиями диаметром 0,04...0,10 мм в осадительную ванну -раствор, содержащий серную кислоту и ее соли. Серная кислота необходима для разложения ксантогената с получением регенерированной целлюлозы. Соли (сульфаты натрия, цинка и др.) регулируют процесс коагуляции. Состав ванны зависит от вида формуемого волокна. [c.593]

    Ни одно из обсуждаемых здесь веществ нельзя прясть из расплава, пооколыку они разлагаются при температурах выше их области плавления. Их следует прясть из растворов в качестве прядильных растворителей используются сильные кислоты или растворители, образующие водородные связи. Основная причина, позволяющая достичь высокой вытя нутости цепей в таких веществах, заключается в том, что концентрированные прядильные растворы обнаруживают мезоморфное поведение. Хорошо известна свойство мезофаз ориентироваться в условиях напряжений сдвига. Методы прядения и вытягивания из этих анизотропных растворов в значительной степени определяют получение высо.комодульных волокон с требуемыми свойствами. О методе прядения по очевидным причинам опубликовано мало работ. Однако совершенно ясно, что процесс прядения осуществляется таким образом, чтобы достигалась высокая ориентация цепи и поддерживалась на протяжении всего процесса до получения окончательной продукции. Таким образом, способность к ориентации обсуждаемых здесь систем непосредственно связана с мезоморфным характером растворов. [c.38]

    Как уже указывалось, формование предусматривает не только придание формы волокна вытекающему прядильному раствору, но и фиксацию его при охлаждении расплава, застудневании раствора в осадительной ванне или при испарении растворителя. Одной из важных стадий технологического процесса, которая определяет структуру и свойства готового волокна, является начальная стадия формования — перевод жидкой струи, выходящей из фильеры, в отвержденнз ю нить. Вследствие фазовых превращений, происходящих в системе, возникают надмолекулярные образования, морфология которых определяется фазовым распадом системы. Именно на этой стадии закладываются основные элементы структуры волокна. Так, ввиду жесткоцепного характера молекул целлюлоза при формовании вискозной нити не должна претерпевать больших изменений, а лишь некоторую ориентацию элементов структуры. [c.243]

    Главное требование к волокнообразующему полимеру заключается в том, что длина его вытянутой молекулы должна быть не менее 1000А (100 нм), т. е. его молекулярный вес должен быть не ниже 10 000. Эта величина, разумеется, может быть и выше например, молекулярный вес необработанной (не-деструктированной) хлопковой целлюлозы достигает 500000. В случае синтетических волокон молекулярный вес исходного полимера намеренно ограничивают, поскольку прядильный раствор или расплав должен иметь не слишком высокую вязкость. У большинства волокон, сформованных из расплава, молекулярный вес составляет 10 000—20 000. Волокна, получаемые формованием из раствора, могут иметь более высокий молекулярный вес. Для текстильных волокон характерна также определенная степень кристалличности и (или) ориентации молекул вдоль оси волокна. Эти свойства, присущие природным волокнам, придаются искусственным и синтетическим волокнам в процессе их формования, вытягивания и термической обработки. Точность соблюдения параметров этих процессов оказывает существенное влияние на физико-механические и отчасти на химические свойства готового волокна. В свою очередь, регулярная структура волокна возможна лишь при определенной степени регулярности строения макромолекул, достаточной для их плотной упаковки, которая необходима для возникновения сильных меж-цепных взаимодействий (за счет водородных связей, ассоциации диполей или сил вандерваальсова притяжения). Однако при слишком высокой степени крист алличности волокно не только становится очень прочным, но и делается слишком жестким и теряет способность растягиваться в процессе его получения и эксплуатации. Кроме того, такое волокно чрезвычайно трудно окрасить, поскольку реакционноспособные группы почти целиком находятся в неупорядоченных участках. Степень кристалличности наиболее прочных синтетических волокон, по-видимому, не превышает 50—60%. Исключение составляют полиакрилонитрильные волокна, которые обнаруживают мало признаков истинной кристалличности, но вместе с тем обладают высокой однородностью структуры по всему сечению волокна. В неупорядоченных участках силы межцепного взаимодействия [c.284]

    Торговая марка волокна Метод полимеризации Концентрация полимеиа в прядильном растворе, % Условия коагуляции Свойства волокна  [c.359]

    Формование полиакрилонитрильного волокна осуществляется из растворов различных растворителей мокрым и сухим способами. Для получения бесцветных прядильных растворов предложено добавлять в раствор восстановительвещества кислого характера Свойства прядильных растворов зависят не [c.716]

    Состав и свойства прядильного раствора (концентрация полимера в растворе и вязкость) зависят от метода формования волокна. Так же как и при получении всех других химических волокон, прядильный раствор, применяемый для формования иолиакрило-нитрильпого волокна сухим способом, обладает значительно более высокой вязкостью, и соответственно концентрация полимера в растворе выше, чем при формовании мокрым способом. При формовании полиакрилонитрильного волокна мокрым способом вязкость прядильного раствора составляет 200—300 сек, [c.179]

    Основным фактором, влияющим на скорость коагуляции и соответственно на свойства получаемого волокна при формовании из прядильного раствора полиакрилонитрила в диметилформамиде, является концентрация последнего в осадительной ванне. Чем выше концентрация димети.тформамида в ванне, тем медленнее происходит коагуляция и тем выше эластические свойства получаемых волокон. [c.182]

    Для устранения влияния же.леза на свойства прядильных растворов необходимо исключить возможность oпpпкo нo ieiпn их с аппаратурой и деталями, изготовленными пз сталп. [c.216]

    Содержание воды в поступающем на формование полимере оказывает существенное влияние на продолжительность пребывания расплава в жидком состоянии. Уже более 0,3% воды может оказывать вредное воздействие, если материал не обладает очень высоким молекулярным весом. Впрочем, оптимальное содержание воды различно для разных партий полимеров и зависит от природы полимера и условий формования. Вообще технолог должен учитывать взаимное влияние условий процесса полимеризации и формования. К производству полиамидных волокон это относится в той же мере, как и к производству вискозных или ацетатных волокон, где свойства прядильного раствора и условия формования должны быть так увязаны между собой, чтобы достигался наилучший эфс[зект. [c.288]

    Студнеобразование в растворах ПВХ представляет практический интерес по двум причинам. Во-первых, наиболее значительная часть этого полимера выпускается в виде материала с большим содержанием пластификатора (т. е. растворителя), доходящим до 507о от массы полимера, причем по свойствам пластифицированный ПВХ подобен студням. Во-вторых, из растворов ПВХ вырабатывается искусственное волокно, в процессе производства которого студнеобразное состояние растворов или является отрицательным фактором (преждевременное застудневание прядильных растворов), или составляет неотъемлемую часть технологического процесса формования волокна в осадительных ваннах. [c.230]


Смотреть страницы где упоминается термин Прядильные растворы свойства: [c.261]    [c.404]    [c.417]    [c.540]    [c.353]    [c.155]    [c.314]    [c.730]    [c.202]    [c.413]    [c.338]    [c.165]    [c.134]   
Основы химии и технологии химических волокон Том 1 (1974) -- [ c.45 ]




ПОИСК





Смотрите так же термины и статьи:

Прядильные растворы прядильные растворы

Растворов свойства



© 2025 chem21.info Реклама на сайте