Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий в хромо-никелевых сплавах

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]


    Защита металлов от газовой коррозии может быть достигнута различными способами защитные покрытия, уменьщение агрессивности газовой среды и др. Наиболее эффективным способом защиты от окисления при высоких температурах является жаростойкое легирование, т. е. введение в состав сплава компонентов, повышающих его жаростойкость. Основными элементами, способствующими созданию защитного слоя на обычных железоуглеродистых, никелевых и других сплавах, являются хром, алюминий и кремний. Эти элементы окисляются при высоких температурах на воздухе легче, чем легируемый металл, и образуют хорошую защитную окалину. [c.146]

    Алюминий используют для нанесения покрытия на сталь в расплавленном состоянии, так как точка плавления стали значительно выше точки плавления алюминия. На сплавы алюминия покрытие из чистого алюминия следует наносить путем металлизации или плакировки. Если в качестве покрытия используют хром, то при электроосаждении непосредственно на основной металл обычно получают покрытие с неравномерной защитой основного металла. Если основной металл — сталь, то на грунтовое никелевое покрытие наносят хромовое покрытие если основной металл — цинк, то на грунтовое медное покрытие наносят никелевое покрытие. На алюминий после химического цинкования наносят слои медного и никелевого покрытия. [c.126]

    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]

    Кузнецов и Голубцова [2151 предлагали определять алюминий а хромо-никелевых сплавах с арсеназо после удаления мешающих элементов электролизом на ртутном катоде и осаждением в виде купферонатов. [c.219]

    Разработаны методики фотометрического определения кальция с хлорфосфоназо III в борной кислоте, двуокиси свинца, минеральных водах [344], сплавах на основе алюминия [200] и железа [631], легированных сталях [632] хромо-никелевых сплавах [199]. [c.95]

    Разработанные методы используют Для определения алюминия в алюминий-магниевых, никелевых и хромо-никелевых сплавах [58(27)] и для анализа природных вод [62(117)]. [c.113]


    Отсюда вытекает необходимость применения для изготовления контактного аппарата, теплообменника и трубопроводов таких материалов, которые не являются специфическими катализаторами для диссоциации или окисления аммиака. К ним относятся алюминий, никель, кварц и отчасти хромо-никелевые сплавы. [c.66]

    Для снятии хрома с алюминия и цинкового сплава, удаления ро-мового покрытия вместе с никелевым применяют анодную обработку описанную Б разделе 6 1. [c.120]

    Никелевые покрытия имеют толщину от 5 до 40 мкм. Для декоративных покрытий используют никель или сочетание никель- -хром в зависимости от состава основного металла (стали, цинкового сплава, меди или медных сплавов, алюминия или алюминиевых сплавов, пластмассы) и условий окружающей среды. С более толстослойным покрытием изготовляют химическое оборудование или изделия, применяемые в гальванопластике. [c.97]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Вследствие того, что продукты термического крекинга, богатые ненасыщенными углеводородами, легче окисляются кислородом воздуха они являются более коррозионными по сравнению с продуктами прямой перегонки. Поэтому крекинг-бензины довольно значительно корродируют медь, ее сплавы и углеродистые стали. Стойкими против коррозии в крекинг-бензинах являются алюминий, его сплавы и хром-никелевые стали.  [c.237]

    Железо, хром и алюминий сплавляются, в интервале до 100% каждого компонента образуют жидкие растворы, которые в сравнении с расплавленным железом являются более густыми, вязкими хром и алюминий увеличивают вязкость в жидком и твердом состоянии при высоких температурах ферритовых и аустенитовых — железных и никелевых сплавов. [c.316]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Не подвергаются газовой резке хромистые и хромо-никелевые стали, содержащие 7—20% Хрома, и цветные металлы (медь и ее сплавы, алюминий). [c.558]

    В результате многочисленных исследований был предложен скелетный никелевый катализатор, получаемый частичным выщелачиванием алюминия из мелких кусков сплава (от 3 до 15 мм), состоящего из 48 /о никеля, 49% алюминия и 3% хрома. Активность этого катализатора оказалась в 3—3,5 раза выше, чем зернистого скелетного никелевого катализатора. Он обладал большой механической прочностью и использовался в промышленных реакторах для гидрирования ксилозных растворов. [c.152]


    Для изготовления аналогичных материалов можно использовать сплав, содержащий 80 о никеля и 20% хрома. В качестве армирующего материала могут быть применены волокнистые монокристаллы окиси алюминия. Эти волокна или усы можно нама-тывать на стержень радиусом в доли сантиметра, при этом они не растрескиваются. Кроме того, около 50% прочности при растяжении сохраняется при температуре плавления хромо-никелевого сплава . [c.192]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Наиболее часто при гидрировании нитрилов используются никелевые катализаторы скелетный никель ( никель Ренея ), получаемый обработкой щелочью сплавов никеля с алюминием, и никель на различных носителях (на окисях алюминия, хрома, ка пемзе, кизельгуре и др.). Описано гидрирование ка скелетных никель-кобальтовом и никель-железо-молибденовом катализаторах 1 26 никеле Урушибара 27,28 (приготовленном восстановлением хлорида никеля с помощью алюминия и последующим выщелачиванием). В лабораторной практике и в промышленности гидрирование нитрилов проводят также ка скелетных кобальтовых катализаторах и на кобальтовых катализаторах на носителях, приготовленных различными способами. При гидрировании динитрилов на кобальтовых катализаторах дипервичные диамины получают с более высокими выходами, чем при использовании никелевых катализаторов. Гидрирование на никель- и кобальтсодержащих катализаторах, как правило, проводят при давлении 80— 200 ат и температуре 80—200°С. Лишь в присутствии исключительно активных модификаций этих катализаторов и в случае нитрилов с высокой реакционной способностью удается снизить тем нературу и давление гидрирования. [c.348]

    Лит. Елютин В. П. [и др.]. Произ,-водство ферросплавов. М., 1957 Б д н е -рал Ф. Электрометаллургия стали и ферросплавов. М., 1963. В. П. Зайко. ФЕРРОНИКЕЛЬ — сплав железа с никелем. Используется со второй половины 19 в. Содержит, кроме никеля, кобальт, кремний, хром и др. примеси (табл.). Ф. получают в основном восстановительной плавкой окисленных никелевых руд, состоящих из окислов кремния, железа, магния, алюминия, хрома и содержащих никель (1—3%) и кобальт (до 0,2%). Различают Ф. богатый (30— 40% N1), средний (10—20% N1) и [c.643]

    Клеи получают также на основ патрийборсиликатов. Часто в качестве добавок в них вводят карбонаты кальция или бария, а также пятиокись фосфора и ванадия. При использовании клеев этого типа большое значение имеет метод подготовки склеиваемых поверхностей. Наиболее целесообразно применять эти клеи для склеивания сталей глубокой вытяжки, хромовых и хромо-никелевых сталей, сплавов титана с алюминием и ванадием [22]. [c.161]

    Во всех случаях никель получается в виде пирофорного кристаллического порошка, и поэтому его хранят под слоем спирта или воды. Он обладает высокой пористостью и большой удельной поверхностью. Свежеприготовленный катализатор содержит 25-100 мл/г водорода, причем с потерей водорода активность катализатора снижается известное влияние на каталитическую активность оказывает остающийся после выщелачивания алюминий. Поэтому, изменяя условия выщелачивания алюминия и промывки катализатора, можно получать различающиеся по активности сорта скелетного никелевого катализатора. Кроме того, катализатор про-мотируется добавлением в сплав хрома, молибдена или кобальта в количестве 3-10 % от массы никеля, введением солей благородных металлов в ходе промывки катализатора или при гидрировании, а также небольших количеств щелочи или органических оснований при гидрировании. Например, продолжительность гидрирования [c.21]

    Исходя из приведенных данных, мы применили [81] для ВДС некоторых производных тиофена скелетный катализатор, приготовленный из обычной нержавеющей стали (1Х18Н9Т), в состав которой, как известно, входит до 18% хрома, до 10% никеля, марганец и титан. Эффективность полученного агента сравнивалась с таковой для скелетных железа и никеля, а также скелетного агента, приготовленного из железо-никелевого сплава с содержанием никеля (после сплавления с алюминием и выщелачивания) [c.273]

    Иллюстрируемое на рис. 106 и 107 влияние добавок хрома, марганца и алюминия подтверждается результатами определения долговечности проволочек при 1050° С, проведенного Гес-сенбрухом и Роном [658]. Добавки железа влияют подобно добавкам марганца и хрома, понижая сопротивление никеля окислению. Надо отметить, что совокупные добавки кремния с мар-ганцем, как показывают результаты этих испытаний по определению долговечности проволочек, способны повысить сопротивление никеля окислению. Никелевый сплав, содержавший 3,5% Si и 1% Мп, оказался вдвое долговечнее никелевой проволочки. [c.340]

    Возможности комбинирования металлов и других элементов в составах покрытий в последние годы резко расширились (см. гл. 3). Особенно большое внимание уделяется созданию сложных жаростойких покрытий. Среди двойных металлических систем наибольший интерес в этом отношении представляют А1—N1, Л1—Со, А1—Сг, А1—V, А1—Т1, А1—2г, Сг—N1, Сг—Т1, Сг—Р(1, Сг-Ке, а среди тройных — Сг—А1—Т1, Сг—А1—N1, Сг—А1—Ре. Покрытия на основе этих систем наиболее приемлемы для защиты легированных сталей и никелевых сплавов. Их наносят обычно диффузионными способами. Соответствующие диффузионные покрытия описаны в многочисленной литературе [51, 143]. Например, диффузионная вакуумная металлизация хромом и алюминием оправдывает себя как эффективное средство увеличения надежности и долговечности лопаток турбин, работающих при 750 °С [144]. На поверхности таких покрытий при эксплуатации образуются шпинели NiAl204 и Ы1Сг204, которые защищают сплав от окисления и разрушения. [c.100]

    Сплавы, наиболее склонные к обрастанию алюминий и его сплавы, сталь нелегированная, сталь медистая, марганцовистая, нержавеющие стали, высоконикелевые стали, сплавы железа с кремнием, стеллиты, сплавы на никелевой основе, легированные медью (монель-металл), хромом (инконель), различные сплавы типа гастеллой, магний и его сплавы, свинец, олово и сплавы РЬ—5п, алюминиевая бронза с никелем (47о А1, 4 /о N1, 92 /о Си), покрытия кадмиевые, хромовые, азотированная сталь, кобальт. [c.458]

    Коррозионнсстойкие никелевые сплавы делятся на две группы к первой группе относятся двойные никелевые сплавы, легированные марганцем, алюминием и кремнием ко второй группе относятся сложные сплавы никеля с медью, хромом, молибденом, вольфрамом и другими элементами типа монель, хастеллой, инконель. [c.224]

    В атмосферных условиях никелевое и хромовое покрытия защищают алюминиевые сплавы лучше, чем анодирование. Так, при толщине покрытия 50 мк никель и хром удовлетворительно защищают алюминий от атмосферной коррозии в течение 16 месяцев. Еще лучшими защитными характеристиками обладает двухслойное покрытие никель—хром. Подслой меди не улучщает защитные свойства хромового покрытия. Кадмиевое покрытие используют для защиты алюминия и его сплавов от контактной коррозии. Серебряное, медное, оловянное покрытия применяют для защиты от окисления алюминиевых электрических контактов. Серебряное и родиевое покрытия используют для защиты от коррозии алюминиевых волноводов [210]. [c.106]

    При относительно малой аэрации (например, в спокойной воде) нержавеющая сталь находится в малоустойчивом пассивном состоянии и поэтому будет малоэффективным катодным контактом, способным лишь немного ускорять коррозию железных сплавов и заметнее — сплавов более электроотрицательных, подобных алюминию. Так, например, для конструкций из низколегированной сгали допустимы соединения заклепками или сварными швами из нержавеющей хромо-никелевой стали. При таких, имеющих относительно небольшую площадь, конструктивных элементах из нержавеющей стали последняя остается вполне устойчивой за счет электрохимического защитного эффекта и лишь в очень небольшой степени увеличивает общую скорость коррозии сопряженной с ней низколегированной стали. Наоборот, если поверхность нержавеющей стали очень велика по сравнению с поверхностью низкоуглеродистой стали (чугуна, цинка или алюминия), то хотя нержавеющая сталь и не является таким активным катодом, как медь, тем не менее появляется опасность значительного ускорения коррозии более отрицательного металла за счет контактной коррозии. [c.416]

    Аргон марки В рекомендуется применять для сварки и плавки нерМсавеющих хромо-никелевых жаропрочных сплавов, легированных сталей различных марок и чистого алюминия. [c.115]

    Основная часть никеля (85—87%) расходуется для- производства сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используются в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. [c.286]

    Основная часть никеля (85—87%) расходуется на производство сплавов с железом, хромом, медью и другими металлами. Эти сплавы отличаются высокими механическими, антикоррозионными, магнитными и электрическими свойствами. Сплавы никеля с алюминием (а также с магнием и кремнием) используют в качестве исходного вещества для получения никеля Ренея — никелевого катализатора скелетного типа, образующегося при действии щелочи на эти сплавы. Никель применяется в производстве щелочных аккумуляторов и в гальванотехнике. В 1980 г. производство никеля составило в капиталистических и слаборазвитых странах около 1 млн. т, в ближайшие 7—10 лет оно возрастет еще на 7% в год. [c.403]

    Многие из величин Стс еще требуется определить количественно или хотя бы качественно. Тем не менее мы предположим, что при определенных составах и микроструктурах сплавов, средах и состояниях напряжения некоторые эффекты должны быть доминирующими. В частности, применяя этот метод анализа к основному примеру поведения I типа, а именно к случаю суперсплава на никелевой основе с умеренно крупным зерном [14, 18—21], мы отметим в соответствии с эффектами, перечисленными в табл. 5, следующие положения. В такой упрочненной системе, как данный сплав (временное сопротивление 1033 МПа даже при 760 °С [169]), маловероятно, чтобы какие-либо эффекты твердого раствора существенно влияли на внутренние напряжения. Выше отмечалось, что зернограничными эффектами также пренебрегали. Основной эффект, как можно предположить, в этом случае будет связан с величинами Стс, аналогичными входящим в уравнение (19), Иными словами, упрочнение рассматриваемой системы на воздухе обусловлено противодействием образованию и движению дислокаций со стороны окалины с хорошей адгезией, формирующейся при испытаниях на ползучесть на воздухе, но отсутствующей при испытаниях в вакууме (см. рис. 10) или в горячей солевой среде [14]. Микрофотографии, представленные на рис. 10, показывают также, что в результате ползучести (как на воздухе, так и в вакууме) поверхностные слои подложки постепенно становятся однофазными. На воздухе образуется фаза 7, вероятно, посредством селективного окисления алюминия и титана, а в вакууме образуется фаза у вследствие испарения хрома. Важно, что ни в одном случае поверхностные слои подложки не являются днсперсноупроч-ненными. Таким образом, эти эффекты будут иметь тенденцию к самокомпенсации при любых попытках, подобных этой, проанализировать сравнительное поведение системы на воздухе и в вакууме. [c.37]


Смотреть страницы где упоминается термин Алюминий в хромо-никелевых сплавах: [c.214]    [c.383]    [c.233]    [c.787]    [c.281]    [c.46]    [c.365]    [c.303]    [c.36]    [c.281]    [c.365]    [c.472]    [c.464]    [c.63]    [c.317]   
Химический анализ в ультрафиолетовых лучах (1965) -- [ c.132 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий в сплавах

Никелевые сплавы

Сплавы хрома



© 2025 chem21.info Реклама на сайте