Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Координационные соединения, теория

    КООРДИНАЦИОННЫХ СОЕДИНЕНИЙ. ТЕОРИЯ ПОЛЯ ЛИГАНДОВ [c.187]

    В монографии изложены основы современных представлений и методы исследования электронного строения и свойств координационных соединений — теория кристаллического поля, метод молекулярных орбиталей, теория электронно-колебательных взаимодействий, электронных спектров, магнитных свойств (магнитной восприимчивости, ЭПР, ЯМР, ЯКР и т. д.) и некоторые приложения теорий к вопросам стереохимии, устойчивости и реакционной способности. [c.2]


    Аналогом применяющейся в квантовой химии координационных соединений теории кристаллического поля б теории кри- [c.258]

    Другим важнейшим положением теории Вернера была идея о том, что группировки, связанные с атомами металла, располагаются вокруг них в пространстве в вершинах определенных многогранников (атом металла, расположенный в центре многогранника, получил название центрального атома). Теория Вернера смогла объяснить и предсказать многочисленные случаи изомерии координационных соединений, в том числе и оптической изомерии.) [c.89]

    Координационная теория Вернера является руководящей в химии комплексных соединений и в настоящее время. С течением времеии изменяются и уточняются лишь представления о силах, действующих между центральным атомом и лигандами (см. 206). Широкое распространение этой теории объясняет, почему комплексные соединения часто называют координационными соединениями . [c.583]

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Спектры поглощения координационных соединений. Координационные соединения большинства переходных металлов окрашены. Согласно теории кристаллического [c.125]

    В заключение отметим, что несмотря на успехи теории кристаллического поля, связанные, в основном, с учетом симметрии, особенно для соединений с ионной связью, она ограничена. Опыты по электронному парамагнитному резонансу показывают, что вопреки теории кристаллического поля электронная плотность не сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. связь в координационных соединениях не ионная, а ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбиталей как более общую, чем электростатическая теория ионной связи. [c.125]


    Теория поля лигандов (метод МО ЛКАО). Теория МО ЛКАО получила в химии координационных соединений название теории поля лигандов. В методе МО ЛКАО принимают, что электроны движутся в поле, создаваемом лигандами и центральным ионом. Молекулярную орбиталь гр можно представить как линейную комбинацию АО центрального иона (хг) и атомных орбиталей лигандов (хь ) = =Можно рассматривать линейную комбинацию АО лигандов как одну так называемую групповую орбиталь Тогда искомая МО примет вид Групповая орбиталь ли- [c.125]

    Для квантовохимического описания свойств координационных соединений применяются три теории теория валентных связей, теория кристаллического поля и теория поля лигандов. [c.44]

    Обозначения энергетических уровней и электронов в координационных соединениях используются в теории групп и в теории симметрии, [c.459]

    Теория жестких и мягких кислот и оснований объясняет также различия в способности галогенид-ионов образовывать координационные соединения с катионами различной степени жесткости. С катионом АР+ (жесткая кислота) последовательность имеет следующий вид (в порядке убывания стабильности) р-, С1 >Вг >1 с катионом Hg + (мягкой кислотой) более стабильные соединения получаются в обратной последовательности. [c.398]

    Наиболее важно применение эффекта Фарадея, а именно магнитного кругового дихроизма, в относительно высокосимметричных системах, таких, как координационные соединения, ароматические соединения и биологически активные соединения. Этот метод имеет значительные преимущества перед методом электронных спектров поглощения. Однако слишком еще преобладает эмпирический подход в анализе экспериментальных данных. Необходимо дальнейшее развитие теории метода. [c.262]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Одними из первых научных представлений о строении координационных соединений явились теории Косселя и Льюиса. [c.232]

    В 1893 г. А. Вернер опубликовал работу К вопросу о строении неорганических соединений . В ней обобщены обширные данные по координационным соединениям, включая исследования учеников Вернера, и заложены основы координационной теории. [c.224]

    Однако теория Вернера позволила объяснить и предсказать образование огромного числа координационных соединений многие из них были синтезированы в лаборатории Вернера. Но главное — она ставила новые вопросы, которые требовали расширения н углубления исследовании. [c.225]

    Изучение неорганических металлсодержащих соединений свыше ста лет было в значительной степени описательным, что в то время было характерно для всей химии вообще. Настоящий теоретический прогресс в понимании структуры и поведения неорганических соединений был невозможен вплоть до от крытия электрона в 1897 г. Это открытие дало толчок развитию электронной теории валентности, и с этого времени теоретическая неорганическая химия стала быстро развиваться. Этому способствовали главным образом работы пионеров в области химии координационных соединений — Льюиса, Косселя, Лэнгмюра, Сиджвика, Фаянса, Полинга, а также многих других ученых, распространявших и пропагандировавших их идеи. [c.230]

    Таким образом, ТПЛ (метод МО ЛКАО) отражает реальное существование определенной ковалентности связи в комплексных соединениях. Достигая тех же результатов, что и ТКП, метод МО ЛКАО превосходит ее, учитывая возможности образования других связей, помимо чисто электростатических. Поэтому в теории поля лигандов получила объяснение химическая связь не только в ионогенных, но и в таких координационных соединениях, как соединения металлов с олефинами, в карбонилах металлов, сэндвичевых и других соединениях, где лигаНды — малополярные или неполярные молекулы и поэтому электростатическая природа связи металл — лиганд исключается. [c.250]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]


    Участие (или /)-орбит центрального атома в образовании координационных соединений весьма существенно, т. к. оно определяет их главные свойства цветность, относительную устойчивость, магнитные свойства, ядерно-электронные эффекты и др. Известны две приближенные теории исследования электронного строения координационных соединений теория кристаллич. поля и теория поля лигандов (метод молекулярных орбит). Первая рассматривает подробно электронные состояния только центрального атома. При этом влияние лигандов обычно анроксимируется элект-рпч. нолем точечных зарядов или диполей, так что состояние центрального атома (или иона) в принципе не отличается от состояния выделенного иона в решетке кристалла. В таком приближении весь эффект [c.317]

    Проблема взаимосвязи структуры и свойств вещества затрагивается в книге еще не раз так, для описания кристаллов используются соответственно их структурным особенностям зонная теория или теория вандер-ваальсовых сил, а для объяснения своеобразия координационных соединений последовательно применяются разные подходы электростатическая модель ионной связи, метод ВС (или локализованных МО), теория кристаллического поля и, наконец, теория поля лигандов (или делокализо-ванных МО). Таким образом, читатель получает возможность ознакомиться с проблемами химической связи на самых разных уровнях-от доквантового до современного. [c.7]

    Координационными или комплексными называют соединения, содержащие центральный атом или ион и группу молекул или ионов, его окружающих и связанных с ним (лигандов). Число лигандов, связанных с центральным атомом (ионом), называют координационным числом иона. Оно зависит как от электронной структуры, так и от соотношения между радиусами центрального атома (иона) и лигандов. Координационное число центрального атома (иона) обычно превышает его валентность, понимаемую как формальный положительный заряд на атоме. Высокая устойчивость многих комплексных соединений указываает, что химическая связь в них не отличается по своей природе от химической связи в обычных ионных или ковалентных соединениях. В большинстве координационных соединений центром является ион переходного металла (Т , Со , Сг " и др.), а лигандами — ионы или полярные молекулы (обладающие к тому же неподеленной парой электронов.) Именно поэтому электростатические представления легли в основу теории комплексных соединений, так называемой теории кристаллического поля, учитывающей также квантовомеханические особенности строения электронной оболочки центрального иона (Бете, Ван Флек). [c.120]

    Все связи в комплексных соединениях являются равноценными. Математически по теории валентных связей это можно описать как смешение з-, р- и /-орбиталей и образование так называемых гибридных орбиталей. В координационных соединениях переходных металлов (с незаполненными -орбиталями) большое значение имеет гибридизация с участием -орбиталей. Так, например, шесть связей между ионом Ре + и шестью ионами Р в комплексном ионе [РеРв] " согласно теории валентных связей следует рассматривать как образованные шестью гибридными орбиталями 3 /Ч 4р ( зр -орбитали), а шесть связей между ионами Ре + и ионами СЫ — как образованных шестью орбиталями (яр й -орбитали). [c.45]

    В последнее время в теории координационных соединений получили развитие полуэмпирические методы МО ЛКАО, в которых наиболее сложные для вычислений интегралы аппроксимируются известными из опыта данными. Наиболее широкое распространение получил полуэмпирический метод Малйкена — Вольфсбергера — Гельмгольца. В этом методе удалось удовлетворительно объяснить качественные особенности спектров многих координационных соеди-не]шй, как, например, тетраэдрических окси-анионов переходных металлов и других комплексов. [c.49]

    Спектры поглощения координационных соединений. Координационные соединения большинства переходных металлов окрашены. Согласно теории кристаллического . поля ответственным за окраску "Ш-является комплексный ион, неор- Чуюо -ганический хромофор (РГоргенсен).  [c.125]

    Вернер ввел представление о главной н побочной валентности. По Вернеру, в комплексе К2[Р1С1а] четыре иона хлора присоединены за счет главной валентности, а два — за счет побочной , в Кз[Ре -иона за счет главной 11 3 — за счет побочной . Аналогично и в других координационных соединениях. Такое подразделение валентности на главную и побочную оказалось необоснованным, и Вернер впоследствии от него отказался. Было доказано, что энергия связи всех шести ионов С1 в [Р1С1о) одинакова, это подтверждалось и в других комплексах. Природа комплексообразо-вания оказалась весьма сложной н не была раскрыта в теории Вернера. [c.225]

    При внимательном изучении веществ, которые относят к координационным соединениям, при исследовании их состава, структуры и физико-химических свойств можно сделать вывод, что трудно провести четкую грань между ними и многими соединениями, которые причисляют к простым . Не случайно Д, И. Менделеев (1877), еще до создания Вернером координационной теории, считал разграничение химических соедине1И1Й на простые и комплексные относительным. Трудно поэтому дать строгое определение понятия коордипационные соединения. Приведем следующее определение  [c.235]

    Гибридизация с й-орбиталями. Кроме успешного объяснения стереохимии соединений углерода, теория валентных связей также успешно объяснила строение координационных соединений. В этом случае обычно необходимо принимать во внимание влияние -орбиталей. Наиболее часто получаются 5р -гибридные связи, обусловливающие плоскую квадратную структуру, и сРзр -гибридные связи, приводящие к октаэдру. Подробнее это рассматривается в гл. 7. Наиболее обычные связи вместе с их геометрической моделью и относительной прочностью приведены в табл. [c.174]

    В настояш,ее время для теоретического объяснения природы связи в координационных соединениях общепризнанными явля ются три более или менее отличных друг от друга подхода. Хронологически и по увеличению сложности первым методом яв ляется электростатическая теория с ее более современной моди фикацией — теорией кристаллического поля, вторым — метод ва лентных связей и третьим — метод молекулярных орбиталей Более исчерпывающая теория, развивающаяся сейчас на основе сочетания теории кристаллического поля и теории молекулярных орбиталей, известна под названием теории поли лигандов. Конечно, следует учесть, что ни одна из этих теорий (за исключением последней) не предназначена для объяснения связи только в комплексных соединениях, но именно в этой области они применяются наиболее успешно. [c.247]

    В теории кристаллического поля (ТКП) лиганды выступают только как Источник создаваемого ими поля. Химическая связь центральный ион — лиганд рассматривается как ионная (например, в [СоРе] ) или ион-дипольная ([Ре(Н20) ), электронная оболочка центрального иона— как автономная, а oбoJЮЧки лигандов вообще не рассматриваются. Такой подход является приближенным. Опыты по электронному парамагнитному резонансу показывают, что электронная плотность ие сосредоточена на лигандах и центральном ионе, а частично размазана в объеме комплексного иона, т. е. что связь в координационных соединениях — ковалентная с большей или меньшей полярностью. Для описания такой связи необходимо привлечь теорию молекулярных орбита-лей, как более общую, чем электростатическая теория ионной связи. В ней находят объяснение Т01якие магнитные эффекты, интенсивность спектров поглощения и другие свойства, не получившие объяснения в ТКП. Сама же ТКП оказывается частным случаем более общей теории МО ЛКАО, получившей в химии координационных соединений название теории поля лигандов (ТПЛ), основы которой заложены Ван-Флеком. [c.247]


Смотреть страницы где упоминается термин Координационные соединения, теория: [c.2]    [c.128]    [c.385]    [c.400]    [c.6]    [c.33]    [c.128]    [c.334]    [c.237]    [c.246]   
Физическая химия для биологов (1976) -- [ c.2 , c.6 , c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Координационная теория

Координационные соединени

Соединения координационные



© 2025 chem21.info Реклама на сайте