Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

К теории сил взаимодействия между молекулами

    Как показали исследования, адсорбция растворенных веществ на твердой поверхности гораздо сложнее, чем адсорбция растворенных веществ на поверхности жидкостей. Общая теория адсорбции на твердой поверхности з достаточной мере еще не разработана. Создание общей теории этого вида адсорбции осложняется не только особым характером поверхности твердых адсорбентов, но и тем, что при адсорбции из раствора происходит одновременная адсорбция растворителя и растворенного вещества. Кроме того, при этом еще необходимо учитывать взаимодействие между молекулами растворенного вещества и растворителя. Вопрос становится еще более сложным, когда растворенным веществом является сильный электролит, и процесс адсорбции принимает ионный характер. [c.200]


    Обобщающую теорию для объяснения закономерностей адсорбции молекул на поверхности адсорбента предложили Брунауэр, Эммет, Теллер (БЭТ) эта теория основана на допущении наличия на поверхности адсорбента равноценных активных центров и образования полимолекулярного слоя с характерной 8-образной изотермой адсорбции. Недостатком теории БЭТ является отсутствие учета взаимодействия между молекулами адсорбируемого вещества. [c.56]

    Согласно теории взаимодействие между молекулами слагается из короткодействующих отталкивательных сил, очень быстро растущих при уменьшении расстояния и сил притяжения, обладающих значительно большим радиусом действия. На рис. 5 приведен график потенциала межмолекулярного взаимодействия. [c.99]

    Наряду с этими двумя константами ит и йг, содержащимися в уравнениях Лэнгмюра и БЭТ, выражение изотермы адсорбции Де Бура включает и третью константу ки Она характеризует неучтенное в прежних теориях взаимодействие между молекулами адсорбата (тангенциальную когезию), определяемое константой а уравнения Ван-дер-Ваальса. Учет этого взаимодействия, необходимый для полноценного описания адсорбционного процесса, является, несомненно, достоинством теории Де Бура. [c.156]

    Согласно теории взаимодействие между молекулами слагается из короткодействующих отталкивательных сил, очень быстро растущих при уменьшении расстояния и сил притяжения, обладающих значительно [c.99]

    Само существование таких упорядоченных структур противоречит предположению теории дипольной релаксации Дебая об отсутствии короткодействующих направленных взаимодействий между молекулами. [c.122]

    Большинство свойств, рассматриваемых в книге, связано с взаимодействием между молекулами. Теплота и свободная энергия образования зависят, однако, в первую очередь от молекулярной структуры и энергии, необходимой для разрыва химических связей между атомами. Для определения этих свойств необходимо знать энергии связей, поэтому большинство методов основано на эмпирических соотношениях, в которые подставляются значения, соответствующие различным типам химических связей между атомами. Теория таких связей разработана еще меньше, чем указанная выше теория взаимодействия между молекулами. [c.22]

    Теория взаимодействия полярных молекул была разработана Дебаем и получила развитие в работах Б. В. Ильина и В. В. Тарасова. Противоположная взаимная ориентация молекул, приводящая к притяжению между молекулами, отвечает более устойчивому состоянию, поэтому такие сочетания их преобладают, и притяжение преобладает над отталкиванием. Можно показать, что энергия взаимодействия двух диполей прямо пропорциональна произведению их дипольных моментов и обратно пропорциональна третьей степеии расстояния между ними. При низких температурах эта энергия [c.87]


    Ориентационное взаимодействие возникает между молекулами, обладающими постоянным дипольным моментом. Согласно теории взаимодействия полярных молекул, разработанной Дебаем, Б. В. Ильиным и другими исследователями, при сближении полярных молекул будет проявляться электростатическое взаимодействие между ними, называемое ориентационным эффектом. [c.75]

    Соотношения (3-10), (3-11) показывают, что коэффициент диффузии при постоянном давлении прямо пропорционален абсолютной температуре в степени Из опыта, однако, следует, что зависимость коэффициента диффузии от температуры более сильная. Так получается и по теории, если отказаться от модели твердых шаров и учесть силы взаимодействия между молекулами на близких расстояниях. На самых близких расстояниях молекулы отталкиваются, на более далеких — притягиваются. При учете взаимодействия молекул на расстоянии теоретическая формула для коэффициента взаимной диффузии получает вид  [c.68]

    Ассоциативные явления происходят и в газах при их рассмотрении с точки зрения молекулярно-кинетической теории газов и сил взаимодействия между молекулами, Наиболее ярко подобные явления выражены в газовых смесях при конденсации компонентов смеси или дальнейшем образовании в ней твердой фазы, происходящих в присутствии неконденсирующихся газов. При этом на процесс фазовых превращений дополнительно накладывается взаимодействие между молекулами пара и газа, приводящее к ассоциации, которая происходит тем интенсивнее, чем меньше кинетическая энергия сталкивающихся молекул, В этих условиях образование твердой фазы при конденсации приводит к тому, что отраженные от холодной поверхности молекулы газа сами выступают в виде ядер — центров сорбции и конденсации паров, а также переносчиками пара к поверхности, за счет чего процесс в определенных термобарических условиях может значительно интенсифицироваться, [c.100]

    Основы физической теории растворов были заложены уже во второй половине XIX в. Сванте Аррениусом и Вант-Гоффом. Согласно этой теории процесс растворения рассматривается как чисто физический процесс равномерного распределения частиц растворяемого вещества по всему объему растворителя, который представляет собой некую индифферентную среду. При этом допускают, что никакого взаимодействия между молекулами растворителя и частицам растворенного вещества не существует. Физическая теория растворов подкреплялась тем, что целый ряд свойств растворов — повышение температуры кипения, понижение температуры замерзания, давление пара, осмотическое давление —действительно зависит только от концентрации растворенного вещества, но не зависит от его природы. Таким образом, растворы, со- [c.80]

    Однако проблема растворов полностью еще не разрешена. Теория еще не позволяет в любом случае предопределять свойства растворов по свойствам их компонентов. Объясняется это чрезвычайно большим многообразием и сложностью взаимодействий между молекулами растворите чя п частицами растворенного вещества. Структура раствора, как правило, бывает значительно сложнее строения его отдельно взятых компонентов. [c.81]

    Это и есть основное уравнение кинетической теории газов. Как следует из изложенных выше представлений, оно относится к идеализированной модели газа, молекулы которого не взаимодействуют между собой, т. е. к так называемым идеальным газам. В действительности почти все газы при небольших давлениях и обычных температурах подчиняются этому уравнению. Для реальных газов оно тем точнее, чем выше температура и чем меньше давление, поскольку при этом уменьшается возможность взаимодействия между молекулами  [c.115]

    Очень важное для теории растворов понятие об идеальном жидком растворе имеет иной смысл, чем понятие о растворе идеальных газов, для которых отсутствуют взаимодействия между молекулами. [c.113]

    Как следует из теории, изложенной во второй главе, чем уже и выше пики адсорбции — десорбции на С, -кривых, тем сильнее аттракционное взаимодействие между молекулами в адсорбционном слое. При очень сильном аттракционном взаимодействии, когда на поверхности электрода образуется конденсированный слой из молекул органического вещества, лики на С, -кривых вырождаются в вертикальные линии, как это показано на рис. 1.12,0. Ряд свойств адсорбированных на электроде конденсированных слоев будет рассмотрен во второй и четвертой главах. [c.25]

    Возможен, однако, случай, когда при протекании процессов изменяется только кинетическая энергия, а потенциальная остается постоянной, как например в идеальном газе. При достаточно высокой температуре и большом объеме любой газ будет вести себя как идеальный. В соответствии с кинетической теорией газов это означает, что потенциальная энергия взаимодействия между молекулами исчезающе мала по сравнению с их кинетической энергией и что мон<но пренебречь собственным объемом молекул по сравнению с объемом, занимаемым газом. В кинетической теории показывается, что поведение идеального газа подчиняется уравнению. [c.13]


    Внутреннее строение жидкостей изучено недостаточно, поэтому до сих пор не создано общей теории жидкого состояния. В данное время еще нельзя предвидеть и рассчитывать различные свойства жидкостей, как это во многих случаях удается делать для газов и кристаллических веществ. Трудность создания такой теории объясняется сложностью взаимодействия между молекулами в жидкостях. [c.66]

    Развиты также теории ассоциированных систем, основанные на решеточной модели, которая учитывает зависимость энергии взаимодействия между молекулами от способа их контактирования (взаимной ориентации). Такой учет возможен в рамках представлений о неоднородной поверхности молекул, о наличии у молекулы различных контактных участков, отличающихся по энергетическим характеристикам взаимодействия с соседями (допустим, для молекулы спирта выделяются контактные участки углеводородного радикала, кислорода и водорода гидроксильной группы). [c.257]

    Видное место в развитии физической химии принадлежит Д. И. Менделееву, который разработал гидратную теорию растворов, объяснившую сущность взаимодействия между молекулами растворителя и растворенного вещества, а также исследовал упругость газов, изучал поверхностное натяжение жидкостей при различных температурах и др. [c.6]

    Диффузия относится к процессам переноса. Механизм явления диффузии в жидкостях близок механизму диффузии в твердых телах, но существенно отличается от процессов диффузии в газах. В газах основным является представление о длине свободного пробега, теряющее смысл в жидкостях. Кроме того, сильт взаимодействия между молекулами оказывают сильное влияние на характер их движения. Феноменологическая теория диффузии вводит эмпирический параметр — коэффициент диффузии Z), определяемый свойствами растворителя и растворенного вещества. В микроскопической статистической теории проводится расчет iiToro коэффициента. Связь микроскопического и макроскопического описаний диффузии осуществляется через коэффициент ди( )фузии D. [c.46]

    Утверждение Аррениуса, что молекулы электролитов в момент растворения диссоциируют на электрически заряженные частицы — ионы, было смелым и революционным для того времени, когда строение атома еще не было разработано и совершенно непонятным было резкое изменение свойств атома или группы атомов, когда они приобретают заряд и становятся ионами. Аррениус смог объяснить многие явления, связанные со свойствами растворов электролитов, но он ие учитывал взаимодействия между молекулами растворенного вещества и растворителя. Поэтому его теория не охватывала сложных процессов химизма растворения, рассматриваемых в гидратной теории Д. И. Менделеева. Эти представления применительно к электролитам были развиты И. А. Каблуковым и В. А. Ки-стяковским и получили в дальнейшем подтверждения в исследованиях, развиваемых многими отечественными и зарубежными учеными. [c.207]

    Общих уравнений изотермы адсорбции из растворов, описывающих рассмотренные типы экспериментальных кривых, пока не существует. Для восходящей ветви кривых типа / (наиболее распространенного) часто и небезуспешно применяют эмпирические формулы, например, уравнение Фрейндлиха (стр. 137), позволяющее в первом приближении определять Х2 при заданных значениях N2 или С2. Существуют также попытки распространения теории БЭТ на адсорбцию из растворов. Однако закономерности процессов ад сорбции на границе твердое тело — раствор ближе, по существу к границе раствор —газ, нежели к границе твердое тело — газ, по скольку взаимодействия между молекулами в жидкой фазе имеют по-видимому, решающее значение. Поэтому поиски общих законо мерностей должны основываться на теории жидкого состояния, до настоящего времени полностью не разработанной. [c.164]

    Глубокий анализ теории строения молекул, а также путей и перспектив развития этой теории имеется в книге В. М. Татевского [131. Экспериментальные данные о сильных химических взаимодействиях есть во многих учебниках, монографиях и справочниках по химии. Экспериментальные исследования слабых химических взаимодействий широко развернулись лишь в последнее десятилетие. Это вызвано успехами оптических, рентгенографических, радиофизических, термодинамических, акустических и многих других методов изучения вещества. Информация о слабых химических взаимодействиях между молекулами пока еще неполна и порой противоречива. Основная трудность состоит в том, что ни один из экспериментальных методов не является универсальным, т. е. дающим во всех случаях надежное и исчерпывающее знание свойств слабых химических связей. Такие сведения могут быть получены, как правило, лишь с помощью нескольких независимых методов. [c.55]

    Вернемся к теории Н. И. Боголюбова. Как уже было сказано, эта теория предполагает, что взаимодействия между молекулами слабы. Под малостью взаимодействия понимается следующее. Пусть [c.242]

    Существует несколько теорий, в которых рассматривается диэлектрическая проницаемость чистых жидкостей, например, теории Кирвуда (1939) и фройлиха (1949). Полученные ими теоретические выражения содержат параметры, которые отражают взаимодействие между молекулами и влияние молекул, препятствующее ориентации соседних молекул. Поэтому без подробных данных о структуре жидкостей в смеси эти выражения использовать нельзя. [c.404]

    Согласно адсорбционной теории /56/, адгезию парафиновых частиц на поверхности аморфных атомных тел можно рассматривать как результат ван-дер-ваальсовых взаимодействий между молекулами частицы и подложно [c.110]

    При изложении молекулярно-кинетической теории газов необходимо отметить, что газообразное состояние вещества характеризуется беспорядочным, хаотичным движением молекул и что сила взаимодействия между молекулами газа зависит от расстояния, на котором они находятся друг от друга. При этом силы притяжения (силы когезии) проявляются лишь на расстоянии примерно 10 см от центра молекулы. За пределами этого расстояния сила взаидюдействия становится настолько малой, что ею можно пренебречь. Благодаря исключительно высокой подвижности молекул газы обладают текучестью и легко занимают весь предоставленный им объем. [c.18]

    Стерический фактор р получил следующее физическое толкование. Для протекания реакции недостаточно, чтобы в момент столкновения молекулы обладали лищь нужным запасом энергии. Важно также и то, как молекулы ориентированы в пространстве в момент встречи, какое время они находятся в соприкосновении, какие виды взаимодействия между молекулами преобладают (силы притяжения или отталкивания). При неблагоприятной ориентации молекул по отношению друг к другу р< 1, при благоприятной — р = 1 Но в некоторых реакциях значение р может быть больше единицы, что с позиций данной теории необъяснимо. [c.286]

    Зависимость скорости реакции от концентрации реагирующих веществ можно понять, исходя из представлений молекулярно-кинетической теории. Для этого рассмотрим в качестве примера взаимодействие между двумя газообразными веществами при условии, что их молекулы сталкиваются друг с другом беспрепятственно. Молекулы газов, находясь в непрерывном движении, неизбеж-сталкиваются друг с другом. Взаимодействие между молекулами, очевидно, может происходить только при их столкновении, следовательно, чем чаще будут сталкиваться молекулы, тем быстрее будет протекать химическая реакция. Частота же столкновений молекул прежде всего зависит от числа реагирующих молекул в единице объема, т. е. от концентраций реагирующих веществ. [c.129]

    В настоящее время наблюдается отход от модельных представлений и интенсивное развитие теорий жидкого состояния, которые можно назвать строгими, поскольку они не исходят из рассмотрения какой-либо упрощенной модели жидкости. Задача строгих теорий — вывести структурные и термодинамические свойства жидкости, исходя исключительно из потенциальной функции взаимодействия между молекулами (как было показано в гл. XI, 1, знания этой функции достаточно для определения разности между термодинамическими функциями реальной системы и идеального газа, образованного теми же частицами, но с отключенными межмолекулярными взаимодействиями). При строгом подходе структурные характеристики жидкости и ее термодинамические свойства связывают с так называемыми молекулярными функциями распределения (функции распределения для групп частиц). Одной из таких функций является определенная выше функция (/ ) для пары частиц. Знание функций распределения позволяет строго, без каких-либо приближенных гипотез, решить задачу расчета термодинамических функций, а также оценить флуктуации в системе. Метод молекулярных функций распределе1шя является общим методом теоретического исследования жидкостей и газов. Общность свойств жидкости и газа утверждается, однако, на иной основе, чем в старых теориях, рассматривавших эти системы как бесструктурные. Учет корреляций в распределении частиц (ближней упорядоченности) составляет сущность метода. Основной проблемой в теории является нахождение бинарной коррелятивной функции распределения, по- [c.360]

    Работы по количественным теориям ассоциированных растворов можно разделить на две группы. Теории одной группы основаны на последовательном применении решеточрюй модели к системе, содержащей молекулы А и В, между которыми возможны сильные направленные взаимодействия. Энергия взаимодействия между молекулами предполагается зависящей от способа контактирования, и вследствие этого в теории используется несколько энергетических параметров. Кроме того, учитываются относительные размеры молекул, координационное число решетки. Теории этой группы можно назвать решеточными теориями ассоциированных растворов. Теории второй группы основываются на рассмотрении химических равновесий между ассоциатами и сольватами в растворе. Раствор представляют как смесь таких образований и мономеров и в зависимости от степени приближения эту смесь считают идеальной, регулярной, атермической и т. д. Основной задачей является оценка тина образующихся ассоциатов и их концентрации в растворе (последнее — с помощью закона действующих масс). Таким путем учитывается наличие специфических взаимодействий в растворе. Взаимодействия между ассоциатами носят характер ван-дер-ваальсовых взаимодействий, и смесь ассоциатов по свойствам должна не сильно отличаться от простых растворов неполярных молекул. [c.430]

    Чтобы определить работу когезии, рассмотрим, следуя так называемой микроскопической теории Гамакера и Де-Бура, результаты суммирования дисперсионных взаимодействий между молекулами, содержащимися в двух полубесконечных объемах конденсированной фазы, разделенных плоским зазором шириной к (рис. 1—10). Сущность такого упрощенного подхода заключается в простом сложе- [c.26]

    Дальнейшее развитие теории адсорбции привело к отказу от упрощенных представлений об одинаковости всех а. ц. и об отсутствии взаимодействия между молекулами в адсорбционном слое. Согласно современным представлениям активные центры на поверхности твердого тела неодинаковы и могут быть разделены на различные группы, отличающиеся между собой по величине теплоты адсорбции Qi и, следовательно, значением Ь. Так как а. ц. действуют независимо друг от друга, то общую адсорбцию можно найти суммированием Г на указанных группах. Обозначим число а. ц. с теплотой адсорбции Сг в некоторой группе через При концентрации С адсорбция в этой группе равна Гг=2г ,С/( 14- С), а общая адсорбция Г=22г6гС/(1- -6гС). Для определе- [c.220]

    В результате многочисленных исследований в области растворов был подмечен чрезвычайно важный факт влия-пия индивидуального характера растворителя на состояние ионов в расп орах. Огромное значение химического взаимодействия между молекулами растворенного вещества и растворителя впервые было показано Д. И. Менделеевым. На основе теории Д. И. Менделеева, А. И. Каблуков развил правильные представления о реакции электролитической диссоциации как о процессе взаимодействия растворенного электролита с растворителем. [c.87]

    Согласно молекулярно-кинетической теории газ состоит из молекул, разделенных большими промежутками 1П0 сравнению с их размерами. Молекулы движутся беспорядочно, сталкиваясь друг с другом, пробегают некоторый путь между двумя столкновениями. Силы взаимодействия между молекулами настолько малы, что ими обычно пренебрегают, за исключением моментов соударений, когда ими пренебрегать ельзя. [c.114]

    Сутерленд (Л. 2-12, 2-1, 2-13] предложил теорию, правильно отображающую температурный ход вязкости газов. В этой теории молекула рассматривается находящейся в сфере притяжения окружающих ее частиц. Он полагал, что кроме сил, проявляющихся при упругом ударе, имеют место взаимодействия между молекулами, обусловливающие до бавочный член, который характеризует внутреннее давление в уравнении Ван-дер-Ваальса. [c.122]


Смотреть страницы где упоминается термин К теории сил взаимодействия между молекулами: [c.161]    [c.126]    [c.14]    [c.128]    [c.361]    [c.30]    [c.16]   
Смотреть главы в:

Основы расчета вакуумной сублимационной аппаратуры -> К теории сил взаимодействия между молекулами




ПОИСК





Смотрите так же термины и статьи:

Молекула взаимодействие



© 2024 chem21.info Реклама на сайте