Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы уран титан

    При анализе сплава уран— титан 1 г образца растворяют в смеси 20 мл 40% -ной серной кислоты и 20 лм воды, окисляют с помощью перекиси водорода и выпаривают до появления паров 80, охлаждают и разбавляют водой до 50 мл. [c.108]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    При анализе сплава уран — молибден 1 г образца растворяют в 20 мл 40% -ной азотной кислоты, добавляют 20 мл 50% -ной серной кислоты и выпаривают до появления паров. После охлаждения и добавления 25 мл воды вновь следует выпаривание. Измерение оптической плотности производят при 430 ммк. Конечная концентрация серной кислоты в кювете соответствует 3,6 М.. Такая же концентрация соблюдается и для сплава, содержащего уран, титан и цирконий. [c.108]

    При электролизе кислых растворов на ртутном катоде выделяются висмут, кобальт, хром, медь, железо, молибден, никель, осмий, свинец, палладий, платина и многие другие, всего более 20 элементов, но не выделяются алюминий, ванадий, уран, титан и некоторые другие. Таким образом, электролиз на ртутном катоде позволяет отделить большие содержания железа, хрома, меди от ванадия, титана и других, что часто существенно упрощает и ускоряет анализ сложных объектов — минералов, руд, концентратов, сплавов и т. д. [c.250]

    Система уран — титан. Это вторая система с непрерывным рядом твердых растворов, занимающим всю у-область диаграммы (рис. 10. 51). Однако у-фаза стабилизируется недостаточно устойчиво, что ограничивает перспективы применения таких сплавов. Тем не менее, определенный интерес представляет [c.367]

    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]

    Кальций—один из самых распространенных элементов в земной коре. Используется он как восстановитель в химической и металлургической промышленности, раскислитель при получении ряда сплавов и специальных сталей, в аккумуляторной промышленности при изготовлении свинцовых положительных пластин. Кальций применяют при очистке свинца и олова от висмута. Учитывая большую восстановительную способность кальция и его гидрида, он применяется для производства тугоплавких металлов, таких, как титан, цирконий, тантал, ниобий, уран, торий и др. [c.256]

    Метод применен для определения серы в металлах [466, 1449], стали [211, 1018, 1380], сплавах [466, 984], селене [1304], хроме [467, 1447], кобальте [1380], титане [1114], металлическом уране и его соединениях [1204], окиси алюминия [324], в топливе и золе [1156[, нефти [2265], лаках [548], органических [967, 1087, 1305] и биологических [1185, 2248, 1297] материалах, для определения сероводорода и сульфидов в природных водах [839, 1177], почвах [937], атмосферном воздухе [631, 1459]. [c.120]


    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Титан, цирконий, ниобий, тантал, торий, уран, медь, таллий, а также бор, кремний и другие в виде сплавов [c.329]

    В промышленности различают черные металлы железо и его сплавы, чугун и различные виды сталей и цветные металлы алюминий, кальций, свинец, медь, золото, кадмий, никель, кобальт, серебро, все остальные металлы и их сплавы. Цветные металлы в соответствии с их свойствами делят на л е г к и е (щелочные и щелочноземельные металлы, магний, алюминий, титан), тяжелые (медь, свинец, никель, золото, цинк, марганец, кобальт), редкие, в том числе благородные и радиоактивные металлы (золото, серебро, селен, теллур, германий, металлы платиновой группы платина, палладий, родий, осмий, рутений, иридий радиоактивные металлы уран, то-266 [c.266]

    Взаимодействие с металлами. Молибден образует сплавы со многими металлами. Двойные сплавы молибдена можно разделить на три основные группы 1) сплавы с полной взаимной растворимостью при всех температурах или в широком интервале температур 2) сплавы с перитектикой 3) эвтектические сплавы [75]. К первой группе относятся сплавы с хромом, танталом, титаном, вольфрамом, ниобием ко второй группе — сплавы с алюминием, кобальтом, железом, никелем, ураном, цирконием, марганцем к третьей группе — сплавы с бериллием, углеродом, бором. Молибден не образует сплавов с медью, серебром, свинцом, магнием и некоторыми другими металлами. [c.299]

    До настоящего времени в простом сосуде удавалось глянцевать или полировать следующие металлы алюминий и его сплавы, сурьму, серебро, висмут, кадмий, хром, кобальт, медь ч ее сплавы, олово, железо, нормальные и специальные стали, германий, бериллий, индий, магний, марганец, молибден, никель и его сплавы, ниобий, золото, свинец, тантал, торий, титан, вольфрам, уран, цинк и цирконий. [c.251]

    Если тепловыделяющий элемент состоит из урана, тория или сплава урана с алюминием, то для растворения обычно применяют азотную кислоту с соответствующим катализатором. Когда тепловыделяющие элементы одеты в алюминиевую оболочку, последнюю удаляют растворением в едком натре, содержащем нитрат натрия, либо в азотной кислоте с добавкой катализатора. Если оболочка сделана из циркония, его сплавов или нержавеющей стали, ее можно снять механическим путем или растворить в плавиковой, серной или соляной кислоте, царской водке или в расплавах солей [14]. Эти растворители пока еще не имеют широкого применения вследствие трудности подбора материала для аппаратуры и его дороговизны (металлический титан, тантал и др.). После растворения оболочки уран (или торий) должен остаться нетронутым. Для ускорения процесс растворения ведут при температуре кипения растворителя. [c.41]

    V е п а. По этому методу удается полностью отделить такие элементы как алюминий, бериллий, титан, циркон, фосфор, мышьяк, ванадий, уран от железа, хрома, цинка, никкеля, кобальта, олова, молибдена, меди, висмута и серебра, полностью и легко выделяющихся на ртутном катоде. Прибор С а i п а получил широкое применение при анализе специальных сталей, ферросплавов, алюминия и его сплавов, бериллия и его сплавов и, наконец, урановых руд. Подробности будут даны в т. II, в. 2 (Специальные электроаналитические методы) Ю. Ч.]. [c.442]

    За последние два десятилетия значительно увеличились объем и масштабы производства некоторых редких металлов и их соединений (титан, цирконий, ниобий, германий, индий, галлий, церий, литий и другие, гидриды, бориды, иодиды, карбиды, большое число разнообразных сплавов). Выпускаются редкие металлы и их соединения высокой чистоты (ультрачистые) для атомной, полупроводниковой и металлургической промышленности (уран, торий, цирконий и др.). [c.13]

    Очень немногие люди могут утверждать, что своими собственными глазами видели такие металлы, как титан, неодим, литий, рубидий, европий или тантал, хотя эти элементы не так уж и редки. Например, природные запасы рубидия в 45 раз больше, чем свинца. А кто скажет, что свинец-редкий металл Выражение редкий означает только то, что до сих пор этот металл добывался лишь в относительно малых количествах, так как известны очень небольшие пригодные для разработки его месторождения. Сегодня эти так называемые редкие металлы - материалы для новой техники. Титан-коррозионно-устойчивый соперник алюминия и сталей, применение которого в химической промышленности особенно резко возросло в последние годы. Уран и торий - материалы энергетики будущего. Тантал-родоначальник особо прочных кислого- и жаростойких сплавов. Без платины, палладия и родия была бы немыслима химия катализаторов. Более 98% мировых запасов платиновых металлов, которые в 1971 г. исчислялись в 14 тыс. т, находятся в Южной Африке, Канаде и СССР. Мировое производство их составляет 119 т, причем 60% этого количества приходится на долю Советского Союза. Интересно то, что через 20 лет примерно половину производства благородных металлов будут составлять родий и палладий, выделенные из радиоактивных отходов ядерных реакторов. Желательно было бы из той же атомной мельницы получать теллур-99. Этот элемент-не только ценный сверхпроводник, но и отличный ингибитор коррозии. При незначительной его концентрации (до 0,1 мг/л) железо не ржавеет ни в воде, ни в солевых растворах даже при повышенных температурах. [c.28]


    Указывалось, что титан с у-ураном должен образовывать непрерывный ряд твердых растворов, однако существуют известные расхождения относительно деталей строения этой области 127 ]. Титан стабилизирует -фазу значительно слабее, чем цирконий или ниобий, так как сообщается об отдельных случаях плохой термостойкости, очевидно, связанных с вероятным превращением в гексагональную б-фазу ПаТ . Слитки сплавов с 10 и 20 вес. % титана, приготовленные в дуговой печи с вольфрамовым электродом, растрескивались во время остывания после выгрузки их из печи, даже если они были дважды переплавлены [17]. Однократно переплавленный металл не удавалось ни прокатывать, ни ковать. Металл после вторичной переплавки в отдельных случаях мог быть прокован при 982° С с немедленным последующим отжигом заготовок. Сплав с 20 вес. % титана был успешно прокатан при 982° С, а 10%-ный сплав дал трещины. [c.444]

    Сернокислый титан дает с перекисью водорода растворы, окрашенные в интенсивный оранжево-желтый цвет. На этой реакции основам колориметрический метод [30]. Лучше всего сравнивать соломенно-желтые цвета, соответствующие содержанию титана менее 0,0010 г на 100 лиг анализируемого раствора. Окраска бледнеет от присутствия даже незначительного количества фтористоводородной кислоты, от больших количеств фосфорной кислоты и сульфата калия, но наличие значительных количеств свободной серной кислоты устраняет влияние последнего (он попадает из сплавов с бисульфатом). Уран, ванадий, молибден и хроматы мешают, давая окраску с перекисью водорода. Железо мешает при высоком содержании желтая окраска железа гасится фосфорной-кислотой благодаря образованию фосфата железа, но фосфорная кислота сама уменьшает интенсивность окраски (см. выше). Поэтому лучше поступать следующим образом. [c.163]

    Фотометрическим методом с применением нитрозо-К-соли определяют кобальт в биологических материалах [1, 51, 52], почве и кормах [24, 43], рудах и минералах [3, 49, 53, 54], цементах [55], чугуне и стали [55], алюминиевых сплавах [56], соединениях бериллия [57], никеле [И, 21, 58], висмуте 12], уране [7], цирконии ]59, 60], титане [59], вольфраме [61], морской воде [23]. [c.211]

    Карминовый метод определения бора применяют, как правило, при относительно высоком содержании бора в различных материалах куркуми-новым методом определяют меньшие его количества. Карминовым методом определяют бор в стали [69], молибденовых сплавах [66], цирконии и его сплавах [68], титане и его сплавах [17, 70], сплавах кобальта н никеля [70], сплавах урана с алюминием [71], нитрате уранила [72, 73], кремнии [74], стекле ]4, 75], искусственных удобрениях [19, 76], фторидах ]12, 77], почвах и растениях J65], водах [65], углеродных [78] и биологических материалах [79]. [c.121]

    Метод искры использован для определения галл1ия е алюминии, титане и цирконии [972], индии [1131], в сплавах золота [910], а также в сплавах индий — галлий [1001, 1148, 1149], индий — галлий — свинец (1001J, плутоний — уран — цирконий [906], в реакторных материалах [737, 786], золе синтетического волокна [972], зернах пшеницы и кукурузы [184. [c.160]

    Экстракция с помощью дитизона применена для фотометрического определения меди в титане и титановых сплавах [257] меди и кобальта после их хроматографического разделения на силикагеле [258] меди, свинца и цинка в природных водах ивы-тяжках из почв [259] цинка и меди в биологических материалах [260] цинка в металлическом кадмии [261] и баббитах [262]. Экстракционное выделение дитизоната цинка использовано для последующего фотометрического определения цинка с помощью ципкона. МетЬд применен для определения цинка в чугуне [263]. Экстракционно-фотометрические методики определения кадмия с помощью дитизона предложены для определения кадмия в алюминии [264], нитрате уранила [2651 и металлическом бериллии [266]. Дитизонат таллия экстрагируют хлороформом. Содержание таллия определяют фотометрированием экстракта [267]. Аналогичным способом определяют таллий в биологических материалах [268]. Индий в виде дитизоната полностью экстрагируется хлороформом при pH 5 [269]. Экстракция комплекса индия с дитизоном применена для фотометрического определения индия в металлическом уране, тории, а также в их солях [270]. Свинец определяют в алюминиевой бронзе [271], теллуровой кислоте [272] и горных породах [273, 274] свинец и висмут — в меди и латуни [275], ртуть —в селене [276] серебро — в почвах, (методом шкалы) [277] ртуть — в рассолах и щелоках (колориметрическим титрованием) [278]. [c.248]

    Для определения редкоземельных элементов в бериллии, уране и титане, а также в их сплавах и окислах, Калман с сотрудниками [40 ] рекомендуют соосаждение с фторидами кальция и магния и последующее катионообменное разделение. Ионы фтора удаляют прокаливанием, а редкоземельные элементы поглощают катионитом из М НС1. Кальций и магний элюируют той же кислотой. Наконец, редкоземельные элементы удаляют из колонки и определяют спектральным методом. Отделение редкоземельных элементов от цинка можно осуществить также в хлоридном растворе. В качестве элюента Фриц и Каракер [21 ] применили 0,1М раствор хлорида этхглен-диаммония вначале элюируется цинк, а затем — лантан. [c.327]

    Преимущества проведения восстановительного процесса в жидкой фазе, создаваемой ртутью, настолько значительны, что предложено даже при осуществлении восстановления магнием, натрием или другими активными металлами в реак-ционнную среду добавлять ртуть. Это было предложено для получения титана, циркония, гафния [31], а также для получения таких металлов, как уран, торий, актиний, плутоний и их сплавов с алюминием, титаном, цирконием [32]. [c.167]

    Наиболее часто применямый метод отделения хрома основан на окислении последнего в щелочной среде до хромата, который остается в растворе, в то время как многие металлы — железо, титан, марганец, никель, кобальт и т. п., выпадают при этом в осадок. Элементы, остающиеся вместе с хромом в рас-, творе, частью не мешают дальнейшему колориметрическому определению (алюминий, мышьяк, фосфор), частью же najiy-шают ход определения (уран в хроматном методе, ванадий и большое количество молибдена в дифенилкарбазидном методе). Окисление можно вести в горячем растворе перекисью натрия или перекисью водорода с едким натром. Окислять можно также сплавлением с перекисью натрия или со смесью карбоната натрия (10 ч.) и нитрата калия (1 ч.), а некоторые образцы, например, силикаты анализируют, сплавляя даже с одним карбонатом натрия. При сплавлении марганец окисляется до манганата, но последний можно восстановить до гидрата двуокиси марганца, добавляя спирт к горячему раствору сплава. Хром обычно не остается в нерастворимом остатке после выщелачивания содового сплава, и поэтому повторное сплавление не требуется. Следует избегать плавня, содержащего слишком много нитрата, а также слишком высокой температуры при сплавлении, так как это может привести к разъеданию платинового тигля и ввести в раствор немного платины. [c.496]

    При температуре 1400 С структура тория из гранецентри-рованной кубической превращается в объемноцентрированную. В своей низкотемпературной модификации торий имеет атомный диаметр, равный 3,59 А, а в высокотемпературной форме 3,56 А. Атомные диаметры большинства металлов отличаются от атомного диаметра тория более чем на 15%, т. е. pasnni a атомных диамет-jPOB достаточна, чтобы существенно задерживать образование твердых растворов. Можно ожидать только ограниченной взаимной растворимости тория и других металлов в твердом состоянии. Вильгельмом и сотрудниками [25] были исследованы и описаны сплавы тория с алюминием, бериллием, висмутом, церием, лантаном, хромом, кобальтом, медью, золотом, гафнием, железом, свинцом, магнием, марганцем, ртутью, никелем, ниобием, серебром, танталом, титаном, вольфрамом, ураном, ванадием, цинком и циркснлем. [c.40]

    Методы горячей обработки урановых сплавов делятся на две категории 1) методы горячей обработки в области температур у-фазы и 2) методы обработки давлением в области высоких температур а-фазы. Из числа исследованных к настоящему времени элементов периодической системы три (ниобий, титан и цирконий)образуют с у-ураном непрерывный ряд твердых растворов, растворимостью (молибден — до 42 ат. % и ванадий —до 12 ат. %). Если говорить об обработке сплавов, наиболее пригодных для изготовления тепловыделяющих элементов и поэтому наиболее подробно изученных (особенно это относится к сплавам урана с молибденом, ниобием и цирконием), то все преимущества оказываются на стороне обработки при температурах у-области. Причина этого заключается в том, что у-фаза, обладает гораздо более высокой пластичностью, чем а-или Р-фаза. Кроме того, уфазы этих сплавов относительно устойчивы даже при комнатной температуре, обладают повышенной размерной устойчивостью при циклической термообработке И устойчивы против коррозии в горячей воде. Поэтому нормально эти сплавы обрабатываются путем ковки, прокатки или прессо-рания в у-фазе и закалки при комнатной температуре в тех случаях, когда это содействует максимально возможной стабилизации у-фазы. [c.436]

    Объединенные фильтраты от оксалатов нейтрализуют аммиаком, вводя его в очень небольшом избытке затем добавляют 1 г таннина, растворенного в небольшом объеме воды, который осаждает в виде оксалатов, фосфатов или танниновых комплексов все присутствующие основания. Осадок смешивают с небольшим количеством бумажной массы, фильтруют под небольшим вакуумом, промывают горячим 2%-ным раствором азотнокислого аммония и прокаливают в платиновом тигле. Остаток сплавляют с 2—3 г соды, сплав извлекают горячей водой, нерастворимые вещества от( )ильтровывают, промывают 2%-ным раствором соды до удаления фосфата, возвращают обратно в стакан и напревают с концентрированной соляной кислотой. После разбавления и добавления бумажной массы и хлористого аммония железо, титан, уран и цирконий дважды выделяют двукратным осаждением аммиаком, не содержащим карбонатов в фильтрате определяют кальций. Осадок гидроокисей прокаливают и снова сплавляют с содой для отделения последних следов фосфорной кислоты нерастворимый остаток употребляют для определений железа, урана, титана и циркония обычными методами. Два содовых фильтрата содержат алюминий его выделяют и взвешивают в виде AIPO4. Содержание урана в монаците обычно очень мало и его лучше определять хроматографически из отдельной навески, как описано в гл. XXI, разд. IX. [c.150]

    Для химического испытания руд, содержащую уран в кислоторастворимой форме, нагревают с азотной кислотой или со смесью (HNO3-I-HF) и раствор выпаривают досуха, повторяя выпаривание с азотной кислотой несколько раз, если применялась фтористоводородная кислота. Из руд, содержащих титан, ниобий или тантал, уран при такой обработке полностью не выделяется их сплавляют с едким кали или перекисью иатрия до полного разложения. Сплав выщелачивают водой, вытяжку подкисляют HNO3 и выпаривают досуха. Фосфатные руды (например, монацит) также разлагают щелочным сплав-, ением с той лишь разницей, что к подкисленному раствору перед его выпариванием добавляют нитрат железа в избытке против необходимого для связывания фосфорной кислоты. [c.351]

    Куркуминовый метод благодаря исключительно высокой чувствительности пригоден для определения очень малых количеств бора. Работы по применению куркуминового метода включают определение бора в кремнии ]2, 41—44], хлорсиланах [26, 41, 45], германии [2], уране [35, 46, 47], цирконии и его сплавах [35, 48—50], гафнии и титане 150], никеле [51, 52], стали [5, 35, 53], металлическом натрии [13], бериллии и магнии [35], силикатах ]54], фосфатах [55], почве [56], растительных материалах [32, 56], химических реагентах [57, 58] и морской воде [59]. [c.119]


Смотреть страницы где упоминается термин Сплавы уран титан: [c.239]    [c.6]    [c.49]    [c.244]    [c.293]    [c.628]    [c.159]    [c.239]    [c.379]    [c.375]    [c.6]    [c.150]   
Технология производства урана (1961) -- [ c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Сплавы титана



© 2025 chem21.info Реклама на сайте