Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жидкости задержка в насадках

    Статическая составляющая задержки определяет объем жидкости, удерживаемой насадкой за счет капиллярных сил, и не зависит от гидродинамических условий. [c.306]

    Если увеличивать плотность орошения и скорость газа, то начинает сказываться тормозящее действие пара на стекание жидкости, т. е. возникает промежуточный режим. В этом режиме сплошной фазой остается паровая, но пар, затормаживаемый жидкостью, образует вихри, благодаря чему увеличивается эффективность массопередачи. При дальнейшем увеличении скорости пара возникает турбулентный режим. При этом пар препятствует свободному стеканию жидкости и вызывает задержку (подвисание) жидкости в насадке стекающая жидкость сильно турбулизирована в паровом потоке образуются вихри, однако течение жидкости все еще сохраняет струйно-пленочный характер, а сплошной фазой остается паровая. [c.46]


    Удин- Величина У выражает количество жидкости, удерживаемое насадкой благодаря капиллярным силам, т. е. независимо от потоков жидкости и газа она определяется свойствами жидкости и материала насадки, а также формой последней. Величина Удин выражает количество жидкости, удерживаемое насадкой благодаря ее орошению при наличии потока газа. Совершенно очевидно, что задержка жидкости, приходящаяся на единицу орошаемой поверхности насадки, равна средней толщине жидкостной пленки (б = JJd). [c.486]

    Очень важной характеристикой колонки является задержка, т. е. количество жидкости, удерживаемое насадкой при работе колонки (динамическая задержка). При выборе колонки для разгонки небольших количеств смесей нужно руководствоваться именно этой характеристикой. Количества промежуточных фракций, получаемых при разгонке, приблизительно равны произведению величины задержки колонки, приходящейся на высоту насадки, эквивалентную одной ступени, на число ступеней, необходимое для полного разделения компонентов. При задержке, соизмеримой по величин е с количеством компонентов в смеси, не может быть достигнуто четкого разделе -ния, какой бы эффективной ни была колонка. Поэтому при разгонке небольших количеств смеси бывает целесообразно воспользоваться колонкой может быть и менее эффективной, но обладающей небольшой задержкой, подвергнув полученные фракции вторичной перегонке. [c.50]

    Некоторых из этих недостатков можно избежать, если измерять количество вещества в колонне в процессе разгонки по одному из описанных ниже способов. Можно отбирать дестиллят до тех пор, пока жидкость не отгонится из куба почти досуха, затем прекратить разгонку и выключить подогрев куба. Тогда вся задержка стечет в куб, где и измеряется ее количество. При этом следует ввести поправки на количество пара в кубе, если последний велик, и на статическую (неудаляющуюся) задержку. Первую поправку можно найти по объему куба, а вторую—удалив жидкость с насадки, пропустив через колонку струю теплого инертного газа, и затем сконденсировав ее. По другому методу, заменяющему первый метод определения статической задержки, в головку колонны приливают известное количество жидкости, служащей для испытания, и отмечают количество жидкости, которая стекла до того момента, когда скорость стекания становится очень малой. [c.100]

    Для анализа аппарата АРН-2 экспериментально определены динамическая задержка жидкости на насадке колонки и число теоретических тарелок в рабочем режиме. [c.119]


    Для динамической задержки жидкости в насадке из уложенных колец и труб получено сходное уравнение [51]  [c.68]

    Уравнение по своей форме имеет большое сходство возрастает задержка жидкости в насадке или начи  [c.36]

    Другим важным этапом расчета является определение диаметра теплообменника смешения. Он должен быть таким, чтобы скорость газа была максимальной и, вместе с тем, не происходило бы задержки движения жидкости по насадке. Вычислив диаметр аппарата, можно подсчитать высоту слоя насадки и затем определить основные конструктивные размеры теплообменника. [c.339]

    Режим этот возникает при таких скоростях пара, при которых пар препятствует стоку жидкости и вызывает подви-сание (задержку) жидкости в насадке. [c.139]

    Количество вещества, остающееся в колонке в виде жидкости после предварительного захлебывания или окончания процесса перегонки и охлаждения, называют статической задержкой. Для определения этого количества в куб загружают жидкость в 5-кратном количестве по сравнению с предполагаемой задержкой и подвергают ее в течение часа ректификации с полным орошением. После охлаждения колонки замеряют количество жидкости в кубе. Разницей между этим количеством и первоначальной загрузкой выражается статическая задержка, которая в насадочных колонках представляет собой часть жидкости, оставшуюся на насадке и между отдельными элементами насадки, а также на стенках колонки, приставки и конденсатора. В тарельчатых колонках основную часть статической задержки составляют слои жидкости, находящиеся на отдельных тарелках. Для упрощенного определения статической задержки можно в верхнюю часть конденсатора добавить отмеренное количество жидкости, которая будет подвергаться перегонке, и затем определить, какое количество задержится в колонне. Такие измерения надо повторить несколько раз, чтобы после полного смачивания аппаратуры полу- [c.174]

    Количество жидкости, задерживаемой на насадке, оказывает существенное влияние на качество разделения. Для колонн периодического действия величина задержки не должна превышать 10% ее загрузки. Различают статическую и динамическую Яд составляющие полной задержки насадки Яц = Я + Яд. [c.228]

Рис. 6. Зависимость скорости реакции от задержки жидкости на насадке цри хлорировании 1,2-дихлорэтана, с г Рис. 6. <a href="/info/6341">Зависимость скорости реакции</a> от <a href="/info/304494">задержки жидкости</a> на насадке цри хлорировании 1,2-дихлорэтана, с г
    Данные о задержке жидкости в упорядоченно загруженных кольцевых насадках приводятся в работе Н. Л . Жаворонкова и др. . Доп. пер. [c.223]

    Определение гидравлических сопротивлений Ар абсорбера показало, что Ар зависит от скорости газа и высоты слоя задержанной жидкости. Задержка жидкости определяется скоростью газа, плотностью орошения и начальной высотой слоя насадки. [c.130]

    Дальнейшее увеличение скоростей взаимодействующих фаз приводит к еще большему увеличению сопротивления насадки и количества удерживаемой жидкости в объеме, занятом насадкой. При определенных величинах паровой и жидкостной нагрузок происходит резкое увеличение количества удерживаемой насадкой жидкости и рост гидравлического сопротивления слоя насадки. Этот режим называется захлебыванием колонны и считается верхним пределом ее устойчивой работы. Количество удерживаемой насадкой жидкости зависит от удельной поверхности насадки /, доли свободного объема е, скоростей движения взаимодействующих фаз. Полную задержку жидкости рассматривают как сумму двух составляющих статической задержки Не и динамической Яд. Статическая составляющая Н определяет объем жидкости, удерживаемый насадкой за счет капиллярных сил, и не зависит от гидродинамических условий. Дина- [c.221]

    На рис. 54Б изображена установка для тонкого фракционирования Тодда [25в], которая изготовляется для перегонки количеств от 5 мл до нескольких литров. Основные черты установки следующие а) три сменные колонки длиной 90 см различного диаметра, наименьший диаметр (внутренний) 5 мл , б) насадка в виде спирали из нержавеющей стали или стекла в) обогреватель, позволяющий вести перегонку в адиабатических условиях и допускающий обзор всех частей установки. При перегонке 2 мл жидкости задержка флегмы в колонке не должна превышать 0,4 мл, однако при перегонке малых количеств это значение лежит ближе к 1 мл, чем к 0,5 мл. Колонка дает хорошие результаты при перегонке 5—50 мл ее эффективность составляет от 30 до 50 теоретических тарелок. [c.58]

    Периодически действующие ректификационные установки применяют для разделения однородных жидких смесей в малотоннажных производствах, когда необходимо предварительно накопить продукт, подлежащий разделению. Особенно рационально применение периодической ректификации в тех случаях, когда на разделение поступает смесь переменного состава или когда необходимо разделить многокомпонентные смеси или несколько различных смесей на одной и той же установке. В этом случае во всех процессах используют одну и ту же колонну, поэтому рассчитывают не размеры колонны, а время, необходимое для разделения каждой смеси. Вследствие того, что,состав продуктов в колонне непрерывно меняется во времени, в расчетах появляется дополнительная переменная — количество удерживаемой в системе жидкости (в насадке, на тарелках, в дефлегматоре, в трубопроводах и др.). Влияние этой переменной на процесс разделения особенно существенно при глубоком исчерпывании кубовой жидкости. Учет задержки жидкости в расчетах рассмотрен в [2]. [c.248]


    Задержку жидкости определяли на экспериментальной установке (описанной в разделе II.А) методом импульсного ввода трасера. Опыты проводили при скоростях ниже точки захлебывания (контактный аппарат с турбулентным трехфазным псевдоожиженным слоем характеризуется очень высокими скоростями захлебывания ). Было установлено, что задержка жидкости не зависит от расхода газа, как и для слоя неподвижной насадки (это подтверждено данными ряда исследователей). [c.677]

    Существенные различия между скрубберами с орошаемой неподвижной насадкой и контактными аппаратами с турбулентным трехфазным псевдоожиженным слоем были отмечены Ченом и Дугласом Задержка жидкости в слое неподвижной насадки слагается из динамической и статической составляющих, причем последняя играет весьма ограниченную роль в процессах межфазного переноса. В то же время, в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем статическая задержка жидкости практически отсутствует вследствие движения насадки и, таким образом, вся удерживаемая жидкость принимает участие в массообмене между фазами. Этим, в частности, можно объяснить тот факт, что при одинаковых условиях работы скорости тенло-массопереноса в контактном аппарате с турбулентным трехфазным псевдоожиженным слоем выше, чем в абсорберах с неподвижной насадкой .  [c.677]

    Часто применяют термин суммарная (или общая) задержка , понимая под этим количество вещества в жидком и парообразном состояниях, находящееся в ректификационной колонне, не считая количества жидкости и пара в кубе. Пользуются также понятием задержка одного из компонентов . При этом необходимо различать статическую задержку (количество жидкости, остающееся в насадке за счет смачивания последней) и динамическую задержку—количество вещества в колонне в рабочих условиях прп наличии противотока паров и жидкости.—При.и. ред. [c.556]

    Количество жидкости, удерживаемой на насадке, оказывает существенное влияние на эффективность разделительного действия насадки. Различают статическую Нз и динамическую Но составляющие полной задержки жидкости насадкой Но=Нз + Но- [c.306]

    При малых нагрузках взаимодействие между фазами незначительно и сопротивление насадки пропорционально сопротивлению сухой насадки. Это так- называемый пленочный режим. При дальнейшем увеличении скоростей потоков возрастает трение между фазами, происходит торможение жидкости и увеличивается ее задержка в насадке. Этот режим характеризует начало подвисания жидкости его принимают в качестве нижнего предела устойчивой работы колонны. При больших жидкостных нагрузках этот режим не всегда четко выявляется. Сопротивление насадки в режиме подвисания пропорционально скорости пара в степени 3—4. Интенсивность массопередачи в этом режиме значительно возрастает. [c.306]

    Как уже отмечалось, на эффективность копонн существенное влияние оказывают флегмовое чиспо, нагрузка сечения копонны по пару и жидкости, задержка. Кроме того, на эффективность влияют также тип и конструкция колонны, тип насадки, состав разделяемой смеси. [c.155]

    Кривые ИТ К получены с помощью колонки, которая эквивалентна 22 теоретическим тарелкам, при кратности орошения 8 1 и задержке 0,5% жидкости на насадке. После отгона главной части загрузки (около 95%) остаток в количестве, примерно, ЪОсм переносился в куб другой колонки ИТК для продолжения разгонки до остатка 12—15 мл- Вторая часть разгонки осуществлялась в колонке, показатели которой (по числу тарелок, кратности орошения и задержке жидкости) близки к первой. [c.32]

    Когда разгонка приближается к концу, скорость выкипания довольно быстро падает, если не пользоваться вытесняющей жидкостью. Если же применять ее, то конец разгонки будет виден благодаря быстрому возрастанию температуры в кубе и необходимости сильно увеличивать обогрев рубашки колонки. Когда температура паров поднимается до температуры кипения вытесняющей жидкости, разгонку оканчивают. При достижении этой температуры куб отъединяют от системы, регулирующей давление, выключают электроток и тотчас же создают атмосферное давление, вводя азот, свободный от кислорода, или углекислый газ. Положительное избыточное давление инертного газа в 50— 100 мм, рт. ст. предупредит окисление жидкости, удерживаемой насадкой при охлаждении и стоке флегмы в куб. По охлаждении до соответствующей более низкой температуры куб может быть отъединен, взвешен, очищен и вновь взвешен для того, чтобы определить вес остатка. Если же куб припаян к колонке, то остаток можно удалить, отсасывая его в тарированную склянку, и взвесить. Суммарный вес вещества, собранного в качестве дестиллята и остатка, бывает меньше, чем вес загрузки. Разность представляет собой статическую задержку колонки и материал, прилипший к стенкам куба. Эта часть материала может быть собрана, если в колонку ввести соответствующий низкокипящий растворитель, дать ей поработать с полным орошением, отобрать раствор и отогнать растворитель на соответствующей колонке с малой задержкой. Таким способом легко получить обратно от 98 до 100% перегнанного материала, если только во время разгонки не было утечки и применялась достаточно охлажденная ловушка для улавливания паров, проскочивших через конденсатор головки. [c.260]

    Общая задержка жидкости на насадке агшарата АРН - 2 [c.119]

    Дальнейшее увеличение задержки жидкости в насадке может привести к возникновению двух режй1ИОВ. Если насадка составляет в основном вытянутые поверхности, эффективный диаметр отверстий становится настолько малым, что жидкость образует сплошную фазу по поперечному сечению колонны — обычно в верхней части насадки. При накоплении жидкости в колонне в виде сплошной фазы наступает совершенно нестабильный режим работы. Незначительное изменение скорости газа (точка С) вызывает чрезвычайно большое изменение сопротивления. Это явление назы-ваетсй захлебыванием. [c.32]

    Предложенный метод получения триметилгаллия осч состоит из двух операций получения триметилгаллия по обменной реакции в среде н-гептана и ректификационной очистки в колонне со средним резервуаром [5]. Причем сам синтез характеризуется высокой селективностью, что позволяет реализовать высокие химические коэффициенты разделения по ряду примесных компонентов. Изучены кинетика реакции равновесие жидкость — пар систем триметилгаллий — н-геп-тан — диметилалюминийхлорид, триметилгаллий — примесь массоиередача и гидродинамика ректификационного процесса глубокой очистки (высота единицы переноса, гидравлическое сопротивление и задержка насадки [5]). Это позволило т айти оптимальные параметры процесса хеморектификацион-ного синтеза и очистки триметилгаллия. На рис. 1 дана принципиальная схема установки для получения триметилгаллия. При этом трудоемкость на производство 1 кг триметилгаллия по сравнению с получением из сплава (Оа — Mg) более чем, в 6 раз ниже, а удельный объем аппаратуры, выраженный через отношение объема полученного продукта к объему исходных реагентов, меньше в 8 раз. Выход целевого продукта составляет 85—95% содержание отдельных примесей металлов 10 —10 мас.%- [c.223]

    Первый режим I(пленочный) и меет место гт.ри небольших нагрузках по глзу и жидкости. Задержка жидкости незначительна и не зависит от скорости газа. Взаимодействие фаз происходит на поверхности смоченной насадки. Сопротивление насадки изменяется пропорционально квадрату скорости газа. [c.116]

    Уравнение (7.30) позволяет рассчитать требуемую высоту насадки, полагая известной задержку жидкости. Насадочпые колонны обладают малыми задержками жидкости. Таким образом, уравнение (7.30) показывает, что для процесса химической абсорбции в кинетическом режиме требуется исключительно большая высота насадки, если он проводится в насадочной колонне. [c.84]

    При исследовании [173] продольного перемешивания в потоках воды и воздуха при их встречном движении в насадочной колонне диаметром 100 мм со слоем насадки высотой 3,6 м. (седла Берля и кольца Рашига размером 12,7 мм) трассером для воздуха служил "Аг, а для воды— 1 (в виде раствора иодида натрия). Долю объема колонны, занимаемую жидкой фазой, определяли по ее задержке Н1а1садкой. Принимая, что Ре зависит от тех же параметров, что и задержка жидкости, для определ ания коэффициента про.долыного перемешивания в жидкой фазе предложили уравнение вида  [c.185]

    IX-1-8. Количество жидкости в орошаемой насадке. Задержка жидкости насадкой при орошении определялась рядом исследователей. Наиболее систематические данные были получены Шулмэном и др. 3. 45 Некоторые из полученных ими результатов представлены на рис. 1Х-3 и 1Х-4, причем они относятся ко всей жидкости, находящейся в колонне, включая и ту ее часть, которая остается по прекращении орошения. На рис. 1Х-3 и 1Х-4 приведены данные для воды , однако в работе Шулмэна и др. даются и соответствующие результаты для органических жидкостей, вязких растворов и растворов поверхностно-активных веществ. [c.223]

    Отметив, что данные Шулмэна и др. относятся к полной задержке, т. е. ко всей жидкости, находящейся в насадке, автор не указывает, что формула Баченэна обобщает результаты, относящиеся лишь к динамической задержке, т. е. той части жидкости, которая находится в движении и, в частности, быстро стекает из колонны по прекращении ее орошения. Именно эта составляющая количества задерживаемой жидкости не зависит от поверхностного натяжения, в то время как полная задержка, согласно Шулмэну и др., зависит от него в заметной степени вследствие существенности влияния поверхностного натяжения на статическую задержку, соответствующую той части жидкости, которая остается в насадке по прекращении орошения. Примеч. пер. [c.224]

    Было найдено, что задержка жидкости возрастает с увеличением ее расхода и уменьшением размера элементов насадки (см. рис. ХУ1П-9, 6). [c.677]

    Одна из применяющихся конструкций—колонна Шейбеля [116— 1181 (рис. 4-23,а). Мешалки в этой колонне (лопастные или турбинные) размещены на вертикальной оси попеременно со слоями неподвижной насадки из стальных спиралей или колец Рашига. Таким образом, колонна делится на камеры перемешивакия, где происходит перемешивание жидкостей и дробление капель, и камеры отстаивания. Интенсивность перемешивания должна быть подобрана таким образом, чтобы капли диспергироваиной фазы могли проходить под действием разности плотностей через камеру перемешивания. В слое насадки происходит частичное разрушение вихрей и задержка мелких капель, захваченных сплошной фазой, в остальном насадочные камеры работают подобно насадочиым колоннам. Высота слоя насадки не должна быть слишком малой. Существует оптимальная высота слоя, при которой действие колонны наиболее эффективно. [c.344]

    Для подогрева до 100-150 °С сырье обычно подается прямотоком в колонну. Чтобы подогреть до 300 °С или выше, требуется многократная циркуляция сьфья через перемычку, что достигается при соответствующем положении крана 4. Такой метод нагрева сырья имеет крупный недостаток при рециркуляции в нагревателе есть опасность термодеструкции сырья, а регулирование расхода парожидкостного потока краном 4 очень неустойчиво. Куб колонны 14 имеет мерник количества фпегмы 13 и патрубки для отбора остаточного продукта в. приемники 15 или непосредственно из куба или из копонны. Такой отбор из куба (из большого объема жидкости ) обусловливает большую задержку и большую вероятность термодеструкции в кубе, часть которой должна все время испаряться. Если же остаточный продукт отбирается в п 1иемник 16 непосредственно и колонны, то состав остатка облегчается, поскольку из него неполностью будут отогнаны легкокипящие фракции, В укрепляющей и отгонной секциях колонны можно использовать насадки или тарелки. В питательной секции обычно они отсутствуют. [c.117]

    Использование уплощенной (линзообразной) формы куба обеспечило снижение гидростатического давления жидкости в зоне испарения остатка, а замена насадки на вращающиеся сетхси предотвратила задержку флегмы по высоте колонки,что уменьшило перепад давления по высоте колонки. Перемешивание сырья в кубе в ходе разгонки исключило местные перегревы и обеспечило лзгчшие условия испарения фракций из всего объема загрузки. Высокое отношение диаметра куба к его высоте позволило резко увеличить зеркало испарения и обеспечить быструю авасогадив паров из тауба. [c.7]

    С целью установления соответствующих зависимостей рассмотрим работу насадочной колонны с нижним питающим кубом (см. рис. 11) полученные соотношения в целом будут справедливы и для колонн других конструкций, кратко охарактеризованных выше. Пусть в начале работы колонны в ее кубе. находится Мо молей загрузки, в которой молярная доля вышекипящей примеси составляет хо. Для равномерного смачивания иасадки жидкостью колонна вначале обычно подвергается захлебыванию , после чего в ней устанавливается необходимый тепловой режим, чтобы скорости потоков ж1идкой и паровой фаз по колонне были постоянными. Избыток жидкости из ректифицирующей части при этом стекает в куб насадкой захватывается (задерживается) лишь некоторое определенное количество жидкости. Величина Ж1идкостного захвата (задержки) зависит в основном от типа и поверхности насадки, а также от скорости потоков жидкости и пара в колонне. Затем в течение некоторого времени (пусковой период) колонна работает в безотборном режиме (режим полного орошения) до достижения в ней стациона(рного состояния и лишь после этого включается система отбора части дистиллята. Время пускового периода может быть определено расчетным путем. Однако такая оценка является весьма приближенной и поэтому время пускового периода определяется экспериментально. Как показали результаты соответствующих исследований, время пускового периода можно несколько снизить, если с самого начала процесса колонна будет работать в отборном режиме. Разумеется, отбираемый при этом дистиллят по своему составу не будет отвечать составу требуемого продукта вплоть до выхода колонны к заданному стационарному состоянию, и его целесообразно во избежание потерь исходного вещества отводить в питающий куб. В результате будем иметь случай стабилизированной ректификации, для которой справедливы закономерности, характеризующие непрерывную ректификацию. Действительно, поскольку при циркуляции жидкость — пар количество вещества в колонне не изменяется, по достижении стационарного состояния будет постоянным и состав питания — образующегося в кубе колонны пара. Совершенно очевидно, что пренебрегая, как и выше, эффектом продольного перемешивания, уравнение рабочей линии колонны, работающей в стационарном состоянии, для рассматриваемого случая можно записать в виде [c.84]

    Насадка Стедмана [34], состоящая из конусов, изготовленных из проволочной сетки (рис. 277,а), также xapaIiтepизyeт я небольшой задержкой и обладает высокой эффективностью и пропускной способностью. Однако п здесь трудно добиться правильного расположения конусов, исключающего растекание жидкости к стенкам. Отверстия 1 смещены одно по отношению к другому. При изготовлении колонки необходимо пользоваться калиброванными трубками. Кох и Ван-Рей [35] предложили упрощенную насадку Стедмана, которая состоит из шаровых элементов и придает насадке эластичность (рис. 277,6). Отбортованный пружинящий рант плотно прижимается к стенке колонки, благодаря чему можно использовать трубки с отклонениями размеров по диаметру на 0,5—1 мм. Несмотря на это, ВЭТТ для модифицированной насадки Стедмана практически не отличается от ВЭТТ для насадки Стедмана с коническими элементами, что установлено на эталонной смеси г-гептан — метилциклогексан (табл. 66). [c.389]

    Применяя беспорядочно засыпанную насадку (см. главу 4.102), стремятся создать необходимую для ректификации возможно большую поверхность, предназначенную для распределения на последней жидкости в виде тонкой пленки (см. главу 4.8) ). Долю поверхности насадки, участвующую в массообмене и теплообмене, называют активной поверхностью. Чем мельче элементы насадки, тем больше их поверхность, заключенная в единице объема. Однако при atOM соответственно возрастает задержка, что снижает разделяющую способность (см. главу 4.105). Таким образом, приходится идти на компромисс, выбирая оптимальные форму, размеры и материал насадки с учетом всех вышеуказанных факторов. [c.441]


Смотреть страницы где упоминается термин Жидкости задержка в насадках: [c.270]    [c.117]    [c.124]    [c.139]    [c.309]    [c.88]    [c.188]    [c.224]    [c.177]   
Массопередача (1982) -- [ c.617 , c.618 ]




ПОИСК





Смотрите так же термины и статьи:

Задержка



© 2025 chem21.info Реклама на сайте